Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T12:53:59.707Z Has data issue: false hasContentIssue false

Role of fluorite phase formation in the texture selection of sol-gel-prepared Pb(Zr1−x, Tix)O3 films on Pt electrode layers

Published online by Cambridge University Press:  31 January 2011

G. J. Norga*
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
F. Vasiliu
Affiliation:
National Institute of Materials Physics, PO Box MG-7, R-76900, Bucharest-Magurele, Romania
L. Fè
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
D. J. Wouters
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
O. Van der Biest
Affiliation:
KU Leuven, MTM Department, Kasteelpark 44, B-3001 Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected] Present address: IBM Zurich Research Laboratory, Säumerstrasse 4, CH 8803 Rüschlikon, Switzerland.
Get access

Abstract

Transmission electron microscopy-selected area electron diffraction studies were performed on as-pyrolyzed sol-gel-derived Pb(Zr1-x, Tix)O3 films deposited on Pt electrode layers to elucidate the structural cause behind the large effects of pyrolysis conditions on orientation selection [L. Fè, G.J. Norga, H.E. Maes, and G. Maes, J. Mater. Res. 16, 2499 (2001)]. The crystallinity of the intermediate pyrochlore phase, which forms during pyrolysis, was found to strongly depend on pyrolysis conditions. Specifically, pyrolysis for 10 s at 350 °C was seen to result in conversion of the film to a well-crystallized, oxygen-deficient pyrochlore phase with the fluorite crystal structure (disordered pyrochlore). We speculate that formation of the metastable fluorite phase is favored by the reduced oxygen partial pressure, caused by burnoff of residual acetates. Longer pyrolysis times and/or higher pyrolysis temperatures result in a quasi-amorphous intermediate phase. The presence of the well-crystallized fluorite phase in the pyrolyzed film is seen to result in (111)-oriented films after crystallization, while pyrolyzed films consisting of a quasi-amorphous intermediate phase turn out (100) or mixed (100)/(111) oriented after crystallization. An explanation for the observed orientation effects, on the basis of the different surface energetics of fluorite versus perovskite structure oxides, is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wouters, D.J., Norga, G., and Maes, H.E., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 381.Google Scholar
2.Lakeman, C.D.E. and Payne, D.A., J. Am. Ceram. Soc. 72, 3091 (1992).CrossRefGoogle Scholar
3.Kosec, M. amd Malic, B., J. Phys. IV 8, 17 (1998).Google Scholar
4.Malic, B., Kosec, M., Smolej, K., and Stavber, S., J. Eur. Ceram. Soc. 19, 1345 (1999).CrossRefGoogle Scholar
5.Coffman, P.R., Barlingay, C.K., Gupta, A., and Dey, S.K., J. Sol-Gel Sci. Technol. 6, 83 (1996).CrossRefGoogle Scholar
6.Lefevre, M.J., Speck, J.S., Schwartz, R.W., Dimos, D., Lockwood, S.J., J. Mater. Res. 8, 2076 (1996).CrossRefGoogle Scholar
7.Spierings, G.A.C.M, Zon, J.B.A. Van, Larsen, P.K., and Klee, M., Integr. Ferroelectr. 3, 283 (1993).CrossRefGoogle Scholar
8.Willems, G.J., Wouters, D.J., and Maes, H.E., Integr. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
9.Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S, Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H., Patthey, L., and Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
10.Brooks, K.G., Reaney, I.M., Klissurska, R., Huang, Y., Bursill, L., and Setter, N., J. Mater. Res. 9, 2540 (1994).CrossRefGoogle Scholar
11.Tani, T., Xu, Z., and Payne, D.A., in Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 295.Google Scholar
12.Chen, S. and Chen, I., J. Am. Ceram. Soc. 77, 2332 (1994).CrossRefGoogle Scholar
13.Huang, Z., Zhang, Q., and Whatmore, R.W., J. Appl. Phys. 86, 1662 (1999).CrossRefGoogle Scholar
14.Chen, S. and Chen, I., J. Am. Ceram. Soc. 81, 97 (1998).CrossRefGoogle Scholar
15.Kaewchinda, D., Chairaungsri, T., Naksata, M., Milne, S.J., and Brydson, R., J. Eur. Ceram. Soc. 20, 1277 (2000).CrossRefGoogle Scholar
16.Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., and DaSalla, R.S., J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
17., L., Norga, G.J., Maes, H.E., and Maes, G., J. Mater. Res. 16, 2499 (2001).CrossRefGoogle Scholar
18.Nouwen, R., Mullens, J., Franco, D., Yperman, J., and Poucke, L.C. Van, Vib. Spectrosc. 10, 291 (1996).CrossRefGoogle Scholar
19.Wilkinson, A.P., Speck, J.S., Cheetham, A.K., Natarajan, S., Thomas, J.M., Chem. Mater. 6, 750 (1994).CrossRefGoogle Scholar
20.Seifert, A., Lange, F.F., and Speck, J.S., J. Am. Ceram. Soc. 76, 443 (1993).CrossRefGoogle Scholar
21.Lakeman, C.D.E., Xu, Z., and Payne, D.A., J. Mater. Res. 10, 2042 (1995).CrossRefGoogle Scholar
22.Polli, A.D., Lange, F.F., and Levi, C.G., J. Am. Ceram. Soc. 83, 873 (2000).CrossRefGoogle Scholar
23.Kim, J.H. and Lange, F.F., J. Mater. Res. 14, 1626 (1999).CrossRefGoogle Scholar
24., L., Vasiliu, F., Norga, G.J., Wouters, D.J., and Biest, O. Van der, Key Eng. Mater. 206–213, 1259 (2002).Google Scholar
25.Christensen, A. and Carter, E.A., Phys. Rev. B 58, 8050 (1998).CrossRefGoogle Scholar
26.Schowalter, L.J., Fathauer, R.W., Goehner, R.P., Turner, L.G., DeBlois, R.W., Hashimoto, S., Peng, J-L., Gibson, W.M., Krusius, J.P., J. Appl. Phys. 58, 302 (1985).CrossRefGoogle Scholar