Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T22:38:54.187Z Has data issue: false hasContentIssue false

Reversible dislocation motion under contact loading in LiNbO3 single crystal

Published online by Cambridge University Press:  31 January 2011

Sandip Basu*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Aiguo Zhou
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Michel W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The room temperature deformation behavior of a LiNbO3 single crystal loaded along [0001] was studied by spherical nanoindentation. The threefold symmetry of the indentation marks was attributed to the formation of (10¯12) twins that reorient the basal planes to allow for basal slip, which is manifested by the formation of fully reversible, hysteretic loops upon cyclic loading. The differences in energy dissipation, threshold stresses, and loop shapes for the three different radii tips are attributed to the different sized twins that form. The results are consistent with our model for the formation of incipient kink bands within the twins.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Weis, R.S.Gaylord, T.K.: Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191 1985CrossRefGoogle Scholar
2Vere, A.W.: Mechanical twinning and crack nucleation in lithium niobate. J. Mater. Sci. 3, 617 1968CrossRefGoogle Scholar
3Subhadra, K.G., Rao, K.K.Sirdeshmukh, D.B.: Systematic hardness studies on lithium niobate crystals. Bull. Mater. Sci. 23, 147 2000CrossRefGoogle Scholar
4Park, B.M., Kitamura, K., Furukawa, Y.Ji, Y.: Relation between mechanical twinning and cracking in stoichiometric lithium niobate single crystals. J. Am. Ceram. Soc. 80, 2689 1997CrossRefGoogle Scholar
5Schaefer, D.M., Patil, A., Andres, R.P.Reifenberger, R.: Elastic properties of individual nanometer-size supported gold clusters. Phys. Rev. B 51, 5322 1995CrossRefGoogle ScholarPubMed
6Gerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J.V.Girshick, S.L.: Reverse plasticity in single crystal silicon nanospheres. Int. J. Plast. 21, 2391 2005Google Scholar
7Valentini, P., Gerberich, W.W.Dumitrica, T.: Phase-transition plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 2007Google Scholar
8Barsoum, M.W., Murugaiah, A., Kalidindi, S.R.Zhen, T.: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508 2004CrossRefGoogle ScholarPubMed
9Barsoum, M.W., Zhen, T., Zhou, A., Basu, S.Kalidindi, S.R.: Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 71, 134101 2005CrossRefGoogle Scholar
10Zhou, A.G., Barsoum, M.W., Basu, S., Kalidindi, S.R.El-Raghy, T.: Incipient and regular kink bands in dense and porous Ti2AlC. Acta Mater. 54, 1631 2006CrossRefGoogle Scholar
11Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M.Murugahiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 2003CrossRefGoogle ScholarPubMed
12Basu, S., Barsoum, M.W.Kalidindi, S.R.: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 2006CrossRefGoogle Scholar
13Basu, S.Barsoum, M.W.: Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves. J. Mater. Res. 22, 2470 2007CrossRefGoogle Scholar
14Basu, S., Barsoum, M.W., Williams, A.D.Moustakas, T.D.: Spherical nanoindentation and deformation mechanisms in free-standing GaN films. J. Appl. Phys. 101, 083522 2007Google Scholar
15Murugaiah, A., Barsoum, M.W., Kalidindi, S.R.Zhen, T.: Spherical nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 2004CrossRefGoogle Scholar
16Molina-Aldareguia, J.M., Emmerlich, J., Palmquist, J., Jansson, U.Hultman, L.: Kink formation around indents in laminated Ti3SiC2 thin-films studied in the nano scale. Scripta Mater. 49, 155 2003CrossRefGoogle Scholar
17Kooi, B.J., Poppen, R.J., Carvalho, N.J.M., DeHosson, J.T.M.Barsoum, M.W.: Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 51, 2859 2003CrossRefGoogle Scholar
18Frank, F.C.Stroh, A.N.: On the theory of kinking. Proc. Phys. Soc. 65, 811 1952CrossRefGoogle Scholar
19Hull, D.: Introduction to Dislocations Pergamon Press Ltd. Oxford 1965 157–158Google Scholar
20Zhou, A., Basu, S.Barsoum, M.W.: Kinking nonlinear elasticity, damping, micro- and macroyielding of hexagonal close-packed metals. Acta Mater. 56, 60 2008CrossRefGoogle Scholar
21Basu, S., Moseson, A.Barsoum, M.W.: On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21, 2628 2006Google Scholar
22Johnson, K.L.: Contact Mechanics Cambridge Cambridge University Press 1985CrossRefGoogle Scholar
23Herbert, E.G., Pharr, G.M., Oliver, W.C., Lucas, B.N.Hay, J.L.: On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331 2001CrossRefGoogle Scholar
24Field, J.S.Swain, M.V.: Determining the mechanical-properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 1995CrossRefGoogle Scholar
25Barsoum, M.W., Murugaiah, A., Kalidindi, S.R.Gogotsi, Y.: Kink bands nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 2004CrossRefGoogle Scholar
26Barsoum, M.W., Farber, L., El-Raghy, T.Levin, I.: Dislocations, kink bands and room temperature plasticity of Ti3SiC2. Metall. Mater. Trans. A 30, 1727 1999Google Scholar
27Pojprapai, S., Jones, J.L., Hoffman, M.Vogel, S.C.: Domain switching under cyclic mechanical loading in lead zirconate titanate. J. Am. Ceram. Soc. 89, 3567 2006CrossRefGoogle Scholar
28Kounga-Njiwa, A.B., Aulbach, E., Rodel, J., Turner, S.L., Comyn, T.P.Bell, A.J.: Ferroelasticity and R-curve behavior in BiFeO3–PbTiO3. J. Am. Ceram. Soc. 89, 1761 2006Google Scholar