Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T07:33:16.579Z Has data issue: false hasContentIssue false

Resonant Raman study of polyparaphenylene-based carbons

Published online by Cambridge University Press:  31 January 2011

A. Marucci
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
S. D. M. Brown
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. A. Pimenta
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. J. Matthews
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
K. Nishimura
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380, Japan
Get access

Abstract

A resonant Raman study of polyparaphenylene (PPP) prepared by the Kovacic and the Yamamoto methods and heat-treated at temperatures THT between 650 and 750°C has been performed using different laser excitation energies Elaser between 1.92 and 3.05 eV. For samples treated at low THT, the Raman spectra change with Elaser, and this behavior is ascribed to the coexistence of two forms of the PPP polymer (benzenoid and quinoid) as well as a disordered carbon material. For higher THT samples, only a dispersion of the position of the Raman band as a function of Elaser is observed, and this is explained as due to the carbonization of the original polymer. The transition temperature between these two regions of resonance behavior is lower for the Yamamoto-PPP samples than for the Kovacic-PPP samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Endo, M., Nishimura, Y., Takahashi, T., Takeuchi, K., and Dresselhaus, M. S., J. Phys. Chem. Solids 57, 725 (1996).CrossRefGoogle Scholar
2.Xing, W., Xue, J.S., Zheng, T., Gibaud, A., and Dahn, J.R., J. Electrochem. Soc. 143, 353 (1996).Google Scholar
3.Matthews, M. J., Ph.D. Thesis, Massachusetts Institute of Technology (1998).Google Scholar
4.Dahn, J. R., Sleigh, A. K., Shi, H., Way, B. M., Weydanz, W.J., Reimers, J. N., Zhong, Q., and U. von Sacken, in Lithium Batteries. New Materials, Developments and Perspectives, edited by Pistoia, G. (Elsevier Science B.V., Amsterdam, 1994), pp. 149.Google Scholar
5.Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M., Science 264, 556 (1994).CrossRefGoogle Scholar
6.Endo, M., Ismail, R., Hiraoka, T., Karaki, T., Kasai, T., Matthews, M. J., Brown, S. D. M., and Dresselhaus, M. S., Proceedings of 23rd Biennial Conference on Carbon, July 18–23, 1997 (1997), Vol. 2, p. 146.Google Scholar
7.Matthews, M. J., Dresselhaus, M. S., Endo, M., Sasabe, Y., Takahashi, T., and Takeuchi, K., J. Mater. Res. 11, 3099 (1996).CrossRefGoogle Scholar
8.Matthews, M. J., Kobayashi, N., Dresselhaus, M. S., Endo, M., Enoki, T., Hiraoka, T., and Karaki, T., in Materials for Electrochemical Energy Storage and Conversion II-Batteries, Capacitors and Fuel Cells, edited by Ginley, D. S., Doughty, D. H., Takamura, T., Zhang, Z., and Scrosati, B. (Mater. Res. Soc. Symp. Proc. 496, Warrendale, PA, 1998).Google Scholar
9.Kovacic, P. and Kyriakis, A., J. Am. Chem. Soc. 85, 454 (1963).CrossRefGoogle Scholar
10.Yamamoto, T. and Yamamoto, A., Chem. Lett., 353 (1977).CrossRefGoogle Scholar
11.Froyer, G., Maurice, F., Bernier, P., and McAndrew, P., Polymer 23, 1103 (1982).CrossRefGoogle Scholar
12.Lerner, N. R., J. Polym. Sci. 12, 2477 (1974).Google Scholar
13.Bredas, J. L., Street, G. B., Themans, B., and Andre, J. M., J. Chem. Phys. 83, 1323 (1985).CrossRefGoogle Scholar
14.Shacklette, L.W., Eckhardt, H., Chance, R. R., Miller, G. G., Ivory, D. M., and Baughman, R. H., J. Chem. Phys. 73, 353 (1980).CrossRefGoogle Scholar
15.Bredas, J. L., Themans, B., Fripiat, J. G., Andre, J. M., and Chance, R. R., Phys. Rev. B 29, 6761 (1984).CrossRefGoogle Scholar
16.Krichene, S., Buisson, J. P., and Lefrant, S., Synth. Met. 17, 589 (1987).CrossRefGoogle Scholar
17.Zannoni, G. and Zerbi, G., J. Chem. Phys. 82, 31 (1985).CrossRefGoogle Scholar
18.Dresselhaus, M.S., Dresselhaus, G., Pimenta, M., and Eklund, P. C., in Raman Scattering in Carbon Materials (in press).Google Scholar
19.Krichene, S., Lefrant, S., Froyer, G., Maurice, F., and Pelous, Y., J. Phys. (Paris) Colloq. 44, C3733 (1983).CrossRefGoogle Scholar