Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:40:19.886Z Has data issue: false hasContentIssue false

Resistive transition broadening in two-phase polycrystalline YBaCuO

Published online by Cambridge University Press:  31 January 2011

J.C. Abele
Affiliation:
Department of Physics, Lewis and Clark College, Portland, Oregon 97219
R.L. Bristol
Affiliation:
Department of Physics, Lewis and Clark College, Portland, Oregon 97219
T.C. Nguyen
Affiliation:
Department of Physics, Lewis and Clark College, Portland, Oregon 97219
M.W. Ohmer
Affiliation:
Department of Physics, Lewis and Clark College, Portland, Oregon 97219
L.S. Wood
Affiliation:
Department of Physics, Lewis and Clark College, Portland, Oregon 97219
Get access

Abstract

A model proposed by Tinkham1 to explain the resistance versus temperature broadening found in high Tc superconductors in applied magnetic fields is extended to “foot and knee”-structured data taken on polycrystalline YBa2Cu3O6+δ. The proposed extension involves a series combination of two types of superconductors. For this series combination to result, a critical ratio of the two types of superconductors must be met—a result common to both percolation and randomized cellular autonoma theory. This critical ratio is investigated via statistical computer models of a polycrystalline superconductor having two phases of crystallites—one with substantially lower Jc than the other.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tinkham, M., Phys. Rev. Lett. 61, 1658 (1988).CrossRefGoogle Scholar
2Abukay, D.Akinaga, M. and Rinderer, L.Physica C1333 (1988).Google Scholar
3Herrmann, R.Nachtwei, G.Kruger, H.Svoboda, P.Breitlow, C.Holtzberger, R.Dwelk, H. and Jacobi, A.Physica Status Solidi B147, 159 (1988).Google Scholar
4Matsumoto, T.Aoki, H.Matsushita, A.Uehara, M.Mori, N.Takahashi, H.Murayama, C. and Maeda, H.Jpn. J. Appl. Phys. 27, L600 (1988).CrossRefGoogle Scholar
5Oh, B.Char, K.Kent, A.D.Naito, M.Beasley, M.R.Geballe, T.H.Hammond, R. H. and Kapitulnik, A.Phys. Rev. B37, 7861 (1988).Google Scholar
6lye, Y.Tamagai, T.Takeya, H. and Takei, H. in Superconducting & Materials, edited by Nakajima, S. and Fukuyama, H.Jpn. J. Appl. Phys. Series 1, p. 46.Google Scholar
7Alexandrov, V.Veselago, V.Vinokurova, L.Ivanov, V.Klimova, L.Osiko, V. and Udovenchik, V.Acta Physica Polonica A76, 41 (1989).Google Scholar
8Sun, J. Z.Char, K.Hahn, M. R.Geballe, T. H. and Kapitulnik, A.Appl. Phys. Lett. 54, 663 (1989).Google Scholar
9Worthington, T. K.Holtzberg, F. H. and Feild, C. A.Cryogenics 30, 417 (1990).CrossRefGoogle Scholar
10Morris, R. C.Coleman, R. V. and Bhandari, R.Phys. Rev. B30, 895 (1972).Google Scholar
11For a discussion of the various models, see Smith, G. B.Bell, J. M., Savvides, N.Filipczuk, S. and Andrikidis, C.Aust. J. Phys. 42, 431 (1989).CrossRefGoogle Scholar
12Anderson, P.W.Phys. Rev. Lett. 9, 309 (1962); Y.B. Kim Rev. Mod. Phys. 36, 39 (1964).Google Scholar
13Yeshurun, Y. and Malozemoff, A. P.Phys. Rev. Lett. 21, 2202 (1988).Google Scholar
14Palstra, T. T.Batlogg, B.Dover, R. B. van, Schneemeyer, L. F. and Waszczak, J. V.Phys. Rev. B41, 6621 (1990).Google Scholar
15Grimmett, G.Percolation (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar