Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:38:23.841Z Has data issue: false hasContentIssue false

Resistance degradation behavior of Ca-doped BaTiO3

Published online by Cambridge University Press:  31 January 2011

Seok-Hyun Yoon*
Affiliation:
LCR R&D Group, LCR Division, Samsung Electro-Mechanics Co. Ltd., Suwon, Gyunggi-Do, 443-743 Korea
Sung-Hyung Kang
Affiliation:
LCR R&D Group, LCR Division, Samsung Electro-Mechanics Co. Ltd., Suwon, Gyunggi-Do, 443-743 Korea
Sang-Hoon Kwon
Affiliation:
LCR R&D Group, LCR Division, Samsung Electro-Mechanics Co. Ltd., Suwon, Gyunggi-Do, 443-743 Korea
Kang-Heon Hur
Affiliation:
LCR R&D Group, LCR Division, Samsung Electro-Mechanics Co. Ltd., Suwon, Gyunggi-Do, 443-743 Korea
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Resistance degradation of Ca-doped BaTiO3 ceramics was investigated. A series of coarse and fine-grained (Ba1–xCax)TiO3 with only Ba site incorporation ranging x from 0 to 0.1, and Ba(Ti1–yCay)O3 ceramics with only Ti site incorporation ranging y from 0 to 0.015, were prepared with similar grain sizes. The increase of x did not cause any distinct difference in degradation, whereas an increase in y caused a significant resistance degradation in both coarse and fine-grained specimens. The variation of ionic transference number (tion) as evaluated by the Warburg impedance was negligible with increase in x, but significantly increased with the increase in y. These results demonstrate that the decrease of lattice parameters and lattice shrinkage by the Ba site incorporation of Ca has little influence on the resistance degradation, and that the oxygen vacancy concentration generated by the Ti site incorporation of acceptor Ca is a very important factor that governs resistance degradation.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hennings, D.F.K.: Dielectric materials sintering in reducing atmospheres. J. Eur. Ceram. Soc. 21, 1637 (2001)CrossRefGoogle Scholar
2.Kishi, H., Mizuno, Y., Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys., Part 1 42, 1 (2003)CrossRefGoogle Scholar
3.Tsur, Y., Dunbar, T.D., Randall, C.A.: Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 (2001)CrossRefGoogle Scholar
4.Randall, C.A.: Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Jpn. 109, S2 (2001)CrossRefGoogle Scholar
5.Kishi, H., Kohzu, N., Mizuno, Y., Iguchi, Y., Sugino, J., Ohsato, H., Okuda, T.: Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3. Jpn. J. Appl. Phys. 38, (9B)5452 (1999)CrossRefGoogle Scholar
6.Sakabe, Y., Hamaji, Y., Sano, H., Wada, N.: Effects of rare-earth-oxides on the reliability of X7R dielectrics. Jpn. J. Appl. Phys. 41, (9)5668 (2002)CrossRefGoogle Scholar
7.Waser, R., Baiatu, T., Härdtl, K.H.: DC electrical degradation of perovskite-type titanates: I. Ceramics. J. Am. Ceram. Soc. 73, 1645 (1990)CrossRefGoogle Scholar
8.Waser, R., Baiatu, T., Härdtl, K.H.: DC electrical degradation of perovskite-type titanates: II. Single crystals. J. Am. Ceram. Soc. 73, 1654 (1990)CrossRefGoogle Scholar
9.Baiatu, T., Waser, R., Härdtl, K.H.: DC electrical degradation of perovskite-type titanates: III. A model of the mechanism. J. Am. Ceram. Soc. 73, 1663 (1990)CrossRefGoogle Scholar
10.Vollmann, M., Waser, R.: Grain boundary defect chemistry of acceptor-doped titanates: High field effects. J. Electroceram. 1, 51 (1997)CrossRefGoogle Scholar
11.Rodwald, S., Fleig, J., Maier, J.: Resistance degradation of iron-doped strontium titanate investigated by spatially resolved conductivity measurements. J. Am. Ceram. Soc. 83, 1969 (2000)CrossRefGoogle Scholar
12.Yang, G.Y., Dickey, E.C., Randall, C.A., Randall, M.S., Mann, L.A.: Modulated and ordered defect structures in electrically degraded Ni/BaTiO3 multilayer ceramic capacitors. J. Appl. Phys. 94, 5990 (2003)CrossRefGoogle Scholar
13.Yang, G.Y., Lian, G.D., Dickey, E.C., Randall, C.A., Barber, D.E., Pinceloup, P., Henderson, M.A., Hill, R.A., Beeson, J.J., Skamser, D.J.: Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II. Insulation resistance degradation under applied DC bias. J. Appl. Phys. 96, 7500 (2004)CrossRefGoogle Scholar
14.Yoon, S.H., Hong, M.H., Hong, H.O., Kim, Y.T., Hur, K.H.: Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200°C) temperatures of acceptor (Mg)-doped BaTiO3 ceramics. J. Appl. Phys. 102, 054105 (2007)CrossRefGoogle Scholar
15.Yoon, S.H., Park, Y.S., Hong, J.O., Sinn, D.S.: Effect of the pyrochlore (Y2Ti2O7) phase on the resistance degradation in yttrium-doped BaTiO3 ceramic capacitors. J. Mater. Res. 22, 2539 (2007)CrossRefGoogle Scholar
16.Yoon, S.H., Randall, C.A., Hur, K.H.: Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: I. Impedance analysis. J. Am. Ceram. Soc. 92, 1758 (2009)CrossRefGoogle Scholar
17.Yoon, S.H., Randall, C.A., Hur, K.H.: Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: II. Thermally stimulated depolarization current (TSDC) analysis. J. Am. Ceram. Soc. 92, 1766 (2009)CrossRefGoogle Scholar
18.Yoon, S.H., Randall, C.A., Hur, K.H.: Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2944 (2009)CrossRefGoogle Scholar
19.Yoon, S.H., Randall, C.A., Hur, K.H.: Correlation between resistance degradation and thermally stimulated depolarization current (TSDC) in acceptor (Mg)-doped BaTiO3 sub-micron fine-grain ceramics. J. Am. Ceram. Soc. 93, 1950 (2010)CrossRefGoogle Scholar
20.Liu, W., Yang, G.Y., Randall, C.A.: Evidence for increased polaron conduction near cathodic interface in the final states of electrical degradation in SrTiO3 crystals. Jpn. J. Appl. Phys. 48, 051404 (2009)CrossRefGoogle Scholar
21.Waser, R., Hagenbeck, R.: Grain boundaries in dielectrics and mixed-conducting ceramics. Acta Mater. 48, 797 (2000)CrossRefGoogle Scholar
22.Morita, K., Mizuno, Y., Chazono, H., Kishi, H., Yang, G.Y., Liu, W.E., Dicky, E.C., Randall, C.A.: Electrical conduction of thin-layer Ni-multilayer ceramic capacitors with core-shell structure BaTiO3. Jpn. J. Appl. Phys. 46, (5A)2984 (2007)CrossRefGoogle Scholar
23.Rödel, J., Tomandl, G.: Degradation of Mn-doped BaTiO3 ceramic under a high D.C. electric field. J. Mater. Sci. 19, 3515 (1984)CrossRefGoogle Scholar
24.Zhang, X.W., Han, Y.H., Lal, M., Smyth, D.M.: Defect chemistry of BaTiO3 with additives of CaTiO3. J. Am. Ceram. Soc. 70, 100 (1987)CrossRefGoogle Scholar
25.Sakabe, Y., Wada, N., Hiramatsu, T., Tonogaki, T.: Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO. Jpn. J. Appl. Phys. 41, (5A)6922 (2002)CrossRefGoogle Scholar
26.Sakabe, Y., Takagi, H.: Nonreducible mechanism of {(Ba1–xCax)O}mTiO2 (m > 1) ceramics. Jpn. J. Appl. Phys. 41, (11A)6461 (2002)CrossRefGoogle Scholar
27.Han, Y.H., Appleby, J.B., Smyth, D.M.: Calcium as an acceptor impurity in BaTiO3. J. Am. Ceram. Soc. 70, 96 (1987)CrossRefGoogle Scholar
28.Hennings, D.F.K., Schreinmacher, H.: Ca-acceptors in dielectric ceramics sintered in reducive atmospheres. J. Eur. Ceram. Soc. 15, 795 (1995)CrossRefGoogle Scholar
29.Lee, S., Randall, C.A.: A modified Vegard's law for multisite occupancy of Ca in BaTiO3-CaTiO3 solid solutions. Appl. Phys. Lett. 92, 111904 (2008)CrossRefGoogle Scholar
30.Lee, J.K., Hong, K.S., Jang, J.W.: Roles of Ba/Ti ratio in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84, 2001 (2001)CrossRefGoogle Scholar
31.Tiwari, V.S., Singh, N., Pandey, D.: Structure and properties of (Ba,Ca)TiO3 ceramics prepared using (Ba,Ca)CO3 precursors: I. Crystallographic and microstructural studies. J. Am. Ceram. Soc. 77, 1813 (1994)CrossRefGoogle Scholar
32.Lin, J.N., Wu, T.B.: Effects of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions. J. Appl. Phys. 68, 985 (1990)CrossRefGoogle Scholar
33.Mitsui, T., Westphal, W.B.: Dielectric and x-ray studies of CaxBa1–xTiO3 and CaxSr1–xTiO3. Phys. Rev. 124, 1354 (1961)CrossRefGoogle Scholar
34.Zhuang, Z.Q., Harmer, M.P., Smyth, D.M., Newnham, R.E.: The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3. Mater. Res. Bull. 22, 1329 (1987)CrossRefGoogle Scholar
35.Han, J.H., Kim, D.Y.: Determination of three-dimensional grain size distribution by linear intercept measurement. Acta Mater. 46, (6)2021 (1998)CrossRefGoogle Scholar
36.Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction 3rd ed (Prentice-Hall, Englewood Cliffs, NJ 2001) Chap. 13Google Scholar
37.Arlt, G., Hennings, D., deWith, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985)CrossRefGoogle Scholar
38.Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 3555 (1989)CrossRefGoogle Scholar
39.Li, X., Shih, W.H.: Size effect in barium titanate particles and clusters. J. Am. Ceram. Soc. 80, 2844 (1997)CrossRefGoogle Scholar
40.Samara, G.A.: Pressure and temperature dependence of the dielectric properties of the perovskites BaTiO3 and SrTiO3. Phys. Rev. 151, 378 (1966)CrossRefGoogle Scholar
41.Jamnik, J., Maier, J.: Treatment of the impedance of mixed conductors: Equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146, 4183 (1999)CrossRefGoogle Scholar
42.Jamnik, J., Maier, J.: Generalized equivalent circuits for mass and charge transport: Chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3, 1668 (2001)CrossRefGoogle Scholar