Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T02:55:32.668Z Has data issue: false hasContentIssue false

Repulsive interaction between coplanar cracks in the double–cantilever geometry

Published online by Cambridge University Press:  31 January 2011

Kai-tak Wan
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742
Brian R. Lawn
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Roger G. Horn
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Experiments on thin mica sheets are used to demonstrate that coplanar cracks in double-cantilever beam specimens do not universally attract each other, as conventionally portrayed, but, at long range, actually repel. An elasticity analysis explains the repulsion in terms of a compression zone, ≍0.35 times the beam half-thickness ahead of the crack tip, generated by bending moments from the cantilever arms on the remaining specimen section.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1992).Google Scholar
2.Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook (Del Research Corp., Hellertown, PA, 1973).Google Scholar
3.Kachanov, M., Int. J. Solids Structures 23 (1), 2343 (1987).CrossRefGoogle Scholar
4.Kachanov, M. and Laures, J-P., Int. J. Fracture 41 (4), 289313 (1989).CrossRefGoogle Scholar
5.Swain, M. V. and Hagan, J. T., Eng. Fracture Mech. 10 (2), 299304 (1978).CrossRefGoogle Scholar
6.Swain, M. V., Lawn, B. R., and Burns, S. J., J. Mater. Sci. 9 (2), 175183 (1974).CrossRefGoogle Scholar
7.Wiederhorn, S. M., Shorb, A. M., and Moses, R. L., J. Appl. Phys. 39 (3), 15691572 (1968).CrossRefGoogle Scholar
8.El-Senussi, A. K. and Webber, J. P. H., J. Appl. Phys. 56 (4), 885889 (1984).CrossRefGoogle Scholar
9.Wan, K-T., Aimard, N., Lathabai, S., Horn, R. G., and Lawn, B. R., J. Mater. Res. 5, 172182 (1990).CrossRefGoogle Scholar
10.Roach, D. H., Lathabai, S., and Lawn, B. R., J. Am. Ceram. Soc. 71 (2), 971051 (1988).CrossRefGoogle Scholar
11.Roach, D. H., Heuckeroth, D. M., and Lawn, B. R., J. Colloid Interface Sci. 114 (1), 293294 (1986).CrossRefGoogle Scholar
12.Wan, K-T. and Lawn, B. R., Acta Metall. 38 (11), 20732083 (1990).CrossRefGoogle Scholar
13.Timoshenko, S. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1951), pp. 8596.Google Scholar