Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T16:56:32.108Z Has data issue: false hasContentIssue false

Repeated Loading, Residual Stresses, Shakedown, and Tribology

Published online by Cambridge University Press:  31 January 2011

J. A. Williams
Affiliation:
Engineering Department, Cambridge University, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
I. N. Dyson
Affiliation:
Mechanical Engineering Department, Sheffield University, Sheffield S1 3JD, United Kingdom
A. Kapoor
Affiliation:
Mechanical Engineering Department, Sheffield University, Sheffield S1 3JD, United Kingdom
Get access

Abstract

Protective residual stresses may be developed in the near surface layers of tribological contacts which enable loads sufficiently large to cause initial plastic deformation to be accommodated purely elastically in the longer term. This is the process of shakedown and, although the underlying principles can be demonstrated by reference to relatively simple stress systems, the situation is complex under a moving Hertzian pressure distribution. Bounding theorems can be used to generate appropriate load or shakedown limits not only for uniform half-spaces but also those with plastic and/or elastic properties which vary with depth. In this way, shakedown maps, which delineate the boundaries between potentially safe and unsafe operating conditions, can be generated for both hardened and coated surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ham, G., Rubin, C. A., Hahn, G. T., and Bhargava, V., J. Trib. 110, 4449 (1988).CrossRefGoogle Scholar
2.Kulkarni, S., Hahn, G. T., Rubin, C. A., and Bhargava, V., Trans. ASME, J. Appl. Mech. 58, 347353 (1991).CrossRefGoogle Scholar
3.Dang Van, K. and Maitournam, M.H., J. Mech. Phys. Solids 41, 16911710 (1993).Google Scholar
4.Yu, M. M-H. and Keer, L. M., J. Trib. 115, 227236 (1993); J. Trib. 117, 234–243 (1995); J. Trib. 118, 329–334 (1996).CrossRefGoogle Scholar
5.Sakae, C. and Keer, L. M., J. Mech. Phys. Solids 45 (9), 15771594 (1997).CrossRefGoogle Scholar
6.Calladine, C. R., Plasticity for Engineers (Pergamon, Oxford, 1969).Google Scholar
7.Johnson, W. and Mellor, P. B., Engineering Plasticity (Van Nostrand, London, 1973).Google Scholar
8.Melan, E., Sitzungberichte der Ak. Wissenschaften Wien, Ser. 2A 147, 7384 (1938).Google Scholar
9.Koiter, W.T., Koninkl. Ned. Ak. Wetenschap B59, 24 (1956).Google Scholar
10.Ponter, A. R. S., 3rd Int. Conf. on Structural Mechanics in Reactor Technol., London, 1976).Google Scholar
11.Ponter, A. R. S., Hearle, A. D., and Johnson, K. L., J. Mech. Phys. Solids 33, 339362 (1985).Google Scholar
12.Kapoor, A. and Johnson, K. L., Int. J. Mech. Sci. 34 (3), 223239 (1992).CrossRefGoogle Scholar
13.Poritsky, H., ASME J. Appl. Mech. 17, 191 (1950).Google Scholar
14.Smith, J.O. and Liu, C. K., ASME J. Appl. Mech. 20, 157166 (1953).Google Scholar
15.Sackfield, A. and Hills, D. A., J. Strain Anal. 18, 101 (1983).CrossRefGoogle Scholar
16.Johnson, K. L., Proc. 4th U.S. National Congress of Applied Mechanics, Berkeley, CA, ASME (1962).Google Scholar
17.Johnson, K. L., Contact Mechanics (Cambridge University Press, 1985).CrossRefGoogle Scholar
18.Johnson, K. L., in Applied Stress Analysis, edited by Hyde, T.H. and Ollerton, E. (Elsevier, 1990).Google Scholar
19.Johnson, K.L., Eur. J. Mech., A/Solids 11 (Special issue), 155172 (1992).Google Scholar
20.Kapoor, A. and Williams, J.A., Wear 191, 256260 (1994); Wear 172, 197–206 (1994).CrossRefGoogle Scholar
21.Kapoor, A. and Williams, J.A., Trans. ASME, J. Trib. 119, 541548 (1996).CrossRefGoogle Scholar
22.Child, H.C., Surface Hardening of Steels (Oxford University Press, Oxford, 1980).Google Scholar
23.Wong, S.K. and Kapoor, A., Trib. Int. 29 (8), 695702 (1996).CrossRefGoogle Scholar
24.Wong, S.K., Kapoor, A., and Williams, J. A., Thin Solid Films 292, 156163 (1997); Wear 203–204, 162–170 (1997).CrossRefGoogle Scholar
25.Barovitch, D., Kingsley, S. C., and Ku, T. C., Int. J. Eng. Sci. 2, 253268 (1964).Google Scholar
26.Djabella, H. and Arnell, R. D., Thin Solid Films 223, 98108 (1993).CrossRefGoogle Scholar
27.Djabella, H. and Arnell, R.D., Thin Solid Films 235, 156162 (1993).CrossRefGoogle Scholar
28.Djabella, H. and Arnell, R. D., Thin Solid Films 245, 2733 (1994).CrossRefGoogle Scholar
29.Kral, E.R. and Komvopoulos, K., ASME J. Appl. Mech. 63, 967973 (1996).CrossRefGoogle Scholar
30.Kapoor, A., Williams, J. A., and Johnson, K. L., Wear 175, 8192 (1994).Google Scholar
31.Greenwood, J. A. and Williamson, J.B. P., Proc. Roy. Soc. Lond. A295, 300319 (1966).Google Scholar
32.Rigney, D. A., Divakar, R., and Kuo, S. M., Scripta Metall. et Mater. 27, 975990 (1992).CrossRefGoogle Scholar
33.Bell, J. C. and Willemse, P. J., presented at World Tribology Congress, Sept. 1998 (London).Google Scholar
34.Torrance, A. A., Wear 200, 4554 (1996).Google Scholar
35.Kopalinsky, E.R. and Oxley, P.L. B., Wear 214, 3846 (1998).CrossRefGoogle Scholar
36.Kapoor, A., Fatigue Fract. Engng. Mater. Struct. 17, 201219 (1994).CrossRefGoogle Scholar
37.Bower, A. F. and Johnson, K. L., J. Mech. Phys. Solids 37, 471493 (1989).CrossRefGoogle Scholar
38.Kapoor, A., Johnson, K. L., and Williams, J. A., Wear 200, 3844 (1996).CrossRefGoogle Scholar
39.Kapoor, A. and Johnson, K. L., Proc. Roy. Soc. A445, 367381 (1994).Google Scholar