Article contents
Reorientation of carbon nanotubes in polymer matrix composites using compressive loading
Published online by Cambridge University Press: 01 April 2005
Abstract
Purified single-walled nanotubes (SWNTs) were dispersed in an epoxy polymer and subjected to uniaxial compressive loading. The orientation and stress in the nanotubes were monitored in situ using polarized Raman microscopy. At strains less than 2%, the nanotubes reorient normal to the direction of compression, thereby minimizing the local strain energy. Above 2% strain, the Raman peak shift reaches a plateau. A new analytical model, which approximates the SWNT reorientation by varying the aspect ratio of a representative spheroid, predicted the rotation behavior of nanotubes under load. The results of this model suggest that the observed plateau of the Raman peak shift is caused by both polymer yielding and interfacial debonding at the ends of nanotubes.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 8
- Cited by