Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:01:48.875Z Has data issue: false hasContentIssue false

Relative stability of LI2, DO22, and DO23 structures in MAl3 compounds

Published online by Cambridge University Press:  31 January 2011

A. E. Carlsson
Affiliation:
Department of Physics, Washington University, St. Louis, Missouri 63130
P. J. Meschter
Affiliation:
McDonnell Douglas Research Laboratories, P. O. Box 516, St. Louis, Missouri 63166
Get access

Abstract

The structural energy differences between cubic LI2 and tetragonal DO22 crystal structures are calculated for MAl3 compounds, where M is a group III, IV, or V transition metal. The stability of the DO22 structure relative to L12 increases rapidly as the transition-metal d-electron count increases. Typical values of E(DO22) – E(L12) are 0.1–0.15 eV/atom (9600–14500 J/g-atom) for group III,  0.05 eV/atom ( 4800 J/g-atom) for group IV, and ∼ –0.2 eV/atom (∼ –19000 J/g-atom) for group V trialuminides. Similar trends are calculated for the DO23/L12 energy difference. The calculated electronic densities of states (DOS) show that each structure has a minimum in the DOS distribution at a characteristic d-electron count. The preferred crystal structure for a given compound is the one in which the Fermi level lies in the minimum.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schneibel, J. H.Becher, P. F. and J.Horton, A.J. Mater. Res. 3, 1272 (1988).CrossRefGoogle Scholar
2Mazdiyasni, S.Miracle, D. B. and Dimiduk, D. M.Scripta Metall. 23, 327 (1989).CrossRefGoogle Scholar
3Subramanian, P. R. and Mendiratta, M. G.Mater. Res. Soc. Fall Meeting, Boston, MA, November 1988.Google Scholar
4Frasier, F. R. and Kaufman, M. J.Mater. Res. Soc. Fall Meeting, Boston, MA, November 1988.Google Scholar
5Schneibel, J. H. and Porter, W. D.Mater. Res. Soc. Fall Meeting, Boston, MA, November 1988.Google Scholar
6Ohashi, T. and Ichikawa, R.Metall. Trans. 3, 2300 (1972).CrossRefGoogle Scholar
7Hori, S.Saji, S. and Kobayashi, T.J. Jpn. Inst. Metall. 37, 1135 (1973).Google Scholar
8Nicholson, D. M. and Stocks, G. M.Mater. Res. Soc. Fall Meeting, Boston, MA, November 1988.Google Scholar
9Williams, A. R.Kubler, J. R. and Gelatt, C. D.Phys. Rev. B19, 6094 (1979).CrossRefGoogle Scholar
10Methfessel, M. and Kübler, J. R.describe the relativistic modification of the ASW method in J. Phys. F12, 141 (1982).Google Scholar
11Hedin, L. and Lundqvist, B. I.J. Phys. C4, 2063 (1971).Google Scholar
12Carlsson, A. E. Phys. Rev. B (in press).Google Scholar
13Villars, P. and Calvert, L. D.Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1986).Google Scholar
14Yeomans, J. in Solid State Physics: Advances in Research and Applications, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1988), Vol. 41, p. 151.Google Scholar