Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T04:30:09.816Z Has data issue: false hasContentIssue false

Relationship between thermal conductivity and structure of nacre from Haliotis fulgens

Published online by Cambridge University Press:  11 May 2011

L. Philippe Tremblay
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada
Michel B. Johnson
Affiliation:
Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada
Ulrike Werner-Zwanziger
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada
Mary Anne White*
Affiliation:
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada; and Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 Canada
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermal conductivity of nacre from red abalone (Haliotis fulgens) has been determined as a function of temperature (2–300 K), direction, and treatment to partially demineralize or to remove a portion of the organic matrix. The room-temperature thermal conductivity and specific heat of nacre are ∼1 W m−1 K−1 and 0.9 J K−1 g−1, respectively. The thermal conductivity of nacre is rather low and glass-like. It is not as anisotropic as one might expect on the basis of brick-and-mortar structure, in support of recent findings that the aragonite tablets are not monolithic. Partial removal of the mineral component reduces the thermal conductivity in both principal directions, whereas partial removal of the proteins (as observed by 13C NMR) only reduces the thermal conductivity across the aragonite layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bruet, B.J.F., Qi, H.J., Boyce, M.C., Panas, R., Lai, K., Frick, L., and Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400 (2005).CrossRefGoogle Scholar
2.Rousseau, M., Lopez, E., Stempflé, P., Brendlé, M., Franke, L., Guette, A., Naslain, R., and Bourrat, X.: Multiscale structure of sheet nacre. Biomaterials 26, 6254 (2005).Google Scholar
3.Jackson, A.P., Vincent, J.F.V., and Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415 (1988).Google Scholar
4.Lin, A.Y. and Meyers, M.A.: Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2, 607 (2009).CrossRefGoogle ScholarPubMed
5.Checa, A.G. and Rodríguez-Navarro, A.B.: Self-organization of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials 26, 1071 (2005).CrossRefGoogle Scholar
6.Gilbert, P.U.P.A., Metzler, R.A., Zhou, D., Scholl, A., Doran, A., Young, A., Kunz, M., Tamura, N., and Coppersmith, S.N.: Gradual ordering in red abalone nacre. J. Am. Chem. Soc. 130, 17519 (2008).CrossRefGoogle ScholarPubMed
7.Knitter, R., Odemer, C., and Hausselt, J.: Thermal investigations on abalone nacre. CFI-Ceramic Forum International 85, E38 (2008).Google Scholar
8.Barthelat, F., Li, C.-M., Comi, C., and Espinosa, H.D.: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977 (2006).Google Scholar
9.Jäger, C. and Cölfen, H.: Fine structure of nacre revealed by solid state 13C and 1H NMR. CrystEngComm. 9, 1237 (2007).CrossRefGoogle Scholar
10.Pokroy, B., Fieramosca, J.S., Von Dreele, R.B., Fitch, A.N., Caspi, E.N., and Zolotoyabko, E.: Atomic structure of biogenic aragonite. Chem. Mater. 19, 3244 (2007).CrossRefGoogle Scholar
11.Darder, M., Aranda, P., and Ruiz-Hitzky, E.: Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 19, 1309 (2007).CrossRefGoogle Scholar
12.Launey, M.E. and Ritchie, R.O.: On the fracture toughness of advanced materials. Adv. Mater. 21, 2103 (2009).Google Scholar
13.Metzler, R.A., Evans, J.S., Killian, C.E., Zhou, D., Churchill, T.H., Appathurai, N.P., Coppersmith, S.N., and Gilbert, P.U.P.A.: Nacre protein fragment templates lamellar aragonite growth. J. Am. Chem. Soc. 132, 6329 (2010).CrossRefGoogle ScholarPubMed
14.Lin, A. and Myers, M.A.: Growth and structure in abalone shell. Mater. Sci. Eng. A 390, 27 (2005).CrossRefGoogle Scholar
15.Menig, R., Meyers, M.H., Meyers, M.A., and Vecchio, K.S.: Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 (2000).CrossRefGoogle Scholar
16.Huang, J.S., Lin, K.J., and Tien, C.: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum. 68, 94 (1997).Google Scholar
17.Kennedy, C.A., Stancescu, M., Marriott, R.A., and White, M.A.: Recommendations for accurate heat capacity measurements using a Quantum Design physical property measurement system. Cryogenics 47, 107 (2007).CrossRefGoogle Scholar
18.Maldonado, O.: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32, 908 (1992).Google Scholar
19.Jakubinek, M.B., Samarasekera, C.J., and White, M.A.: Elephant ivory: A low thermal conductivity, high strength nanocomposite. J. Mater. Res. 21, 287 (2006).CrossRefGoogle Scholar
20.Gómez, O., Quintana, P., Aguilar, D.H., Alvarado-Gil, J.J., Yánez-Limón, M., Diaz, L., and Aldana, D.: Photothermal characterization of materials biomineralized by mollusks. Rev. Sci. Instrum. 74, 750 (2003).CrossRefGoogle Scholar
21.White, M.A.: Physical Properties of Materials (CRC Press, Boca Raton, FL, 2011).Google Scholar
22.Clauser, C. and Huenges, E.: Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations: a Handbook of Physical Constants; Aherns, T.J., ed.; American Geological Union, Washington, DC, (1995).Google Scholar
23.Tuladhar, T.R., Paterson, W.R., and Wilson, D.I.: Investigation of alkaline cleaning-in-place of whey protein deposits using dynamic gauging. Food Bioprod. Process. 80, 332 (2002).CrossRefGoogle Scholar
24.Staveley, L.A.K. and Linford, R.G.: The heat capacity and entropy of calcite and aragonite, and their interpretation. J. Chem. Thermodyn. 1, 1 (1969).CrossRefGoogle Scholar
25.Tritt, T.M.: Thermal Conductivity: Theory, Properties and Applications (Kluwer/Plenum, New York, 2004).Google Scholar
26.Chen, G.: Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39, 471 (2000).CrossRefGoogle Scholar
27.Hu, Y.-Y. and Schmidt-Rohr, K.: Effects of L-spin longitudinal quadrupolar relaxation in S{L} heteronuclear recoupling and S-spin magic-angle spinning NMR. J. Magn. Reson. 197, 193 (2009).CrossRefGoogle Scholar
28.Gupta, N.S., Cody, G.D., Tetlie, O.E., Briggs, D.E.G., and Summons, R.E.: Rapid incorporation of lipids into macromolecules during experimental decay of invertebrates: Initiation of geopolymer formation. Org. Geochem. 40, 589 (2009).CrossRefGoogle Scholar
29.Papenguth, H.W., Kirkpatrick, R.J., Montez, B., and Sandberg, P.A.: 13C MAS NMR spectroscopy of inorganic and biogenic carbonates. Am. Mineral. 74, 1152 (1989).Google Scholar
30.Takahashi, K., Yamamoto, H., Onoda, A., Doi, M., Inaba, T., Chiba, M., Kobayashi, A., Taguchi, T., Okumura, T., and Ueyama, N.: Highly oriented aragonite nanocrystal–biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata. Chem. Commun. 996 (2004).Google Scholar
31.Al Sagheer, F.A., Al-Sughayer, M.A., Muslim, S., and Elsabee, M.Z.: Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410 (2009).Google Scholar