Article contents
Relationship between layered crystal structure and mechanical properties of M3AlN (M = Zr and Hf): A first-principles investigation
Published online by Cambridge University Press: 31 January 2011
Abstract
Bonding character, elastic mechanical parameters, ideal strengths, and atomistic shear deformation mechanisms of M3AlN (M = Zr and Hf) were studied by first-principles method. M3AlN exhibits layered chemical bonding character due to the alternately stacking of relatively soft Al–M and strong N–M covalent bonds. The second-order elastic constants and mechanical parameters of M3AlN were reported for the first time. The stress–strain relationships for different deformation modes were studied and the ideal shear and tensile strength were obtained. M3AlN ceramics are predicted to be “quasi-ductile” layered nitrides based on the low shear-modulus-to-bulk-modulus ratios, positive Cauchy pressure (c12–c44), and lower ideal shear strength compared to ideal tensile strength. Investigation of the atomistic shear deformation mechanism of Hf3AlN shows that stretching of soft Al–Hf bonds and relatively weak bridge N–Hf1 bonds dominate the shear deformation; while the rigid N–Hf2 bonds resist against the applied shear strain. Chemical bonding characteristics and shear deformation mechanism of M3AlN are similar with those of other “quasi-ductile” ceramics, such as MAX phases, LaPO4 monazite, and γ-Y2Si2O7. The results further suggest that M3AlN nitrides should be quasi-ductile and damage tolerant.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
REFERENCES
- 8
- Cited by