Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:50:17.106Z Has data issue: false hasContentIssue false

Relationship between glass transition temperature and Debye temperature in bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Wei Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ping Wen
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
D.Q. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
M.X. Pan
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ru Ju Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

The Debye temperature and glass transition temperature of a variety of bulk metallic glasses (BMGs) were determined by acoustic measurement and differential scanning calorimetry, respectively. The relationship between the Debye temperature and glass transition temperature of these BMGs was analyzed, and their observed correlation was interpreted in terms of the characteristics of the glass transition in BMGs.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Anderson, P.W., Science 267, 1615 (1995).CrossRefGoogle Scholar
2.Debenedetti, P.G. and Stillinger, F.H., Nature 410, 259 (2001).CrossRefGoogle Scholar
3.Johnson, W.L., Mater. Sci. Forum 225–227, 35 (1996).CrossRefGoogle Scholar
4.Wang, W.H., Wei, Q., and Bai, H.Y., Appl. Phys. Lett. 71, 58 (1997).CrossRefGoogle Scholar
5.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 425 (1990).CrossRefGoogle Scholar
6.Xing, L.Q., Eckert, J., Loeser, W., and Schultz, L., Appl. Phys. Lett. 73, 2110 (1998).CrossRefGoogle Scholar
7.Ehmler, H., Aetzke, K., Faupel, F., and Geyer, U.. Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
8.Wang, W.H., Wei, Q., and Friedrich, S., Phys. Rev. B 57, 8211 (1998).CrossRefGoogle Scholar
9.For a review, see Okamoto, P.R., Lam, N.Q., and Rehn, L.E., Solid State Physics, Vol. 52, edited by Ehrenrein, H. and Spapen, F. (Academic Press, San Diego, CA, 1999), pp. 1135Google Scholar
10.Wang, W.H., Bai, H.Y., Luo, J.L., and Jin, D., Phys. Rev. B 62, 25 (2000).CrossRefGoogle Scholar
11.Lindemann, A., Z. Phys. 11, 609 (1910).Google Scholar
12.Debenedetti, P.G. and Stillinger, F.H., Nature (London) 410, 259 (2001).CrossRefGoogle Scholar
13.Bai, H.Y., Luo, J.L., and Wang, W.H., Appl. Phys. Lett. 78, 2697 (2001).CrossRefGoogle Scholar
14.Wang, W.H., Wang, R.J., Li, F.Y., Zhao, D.Q., and Pan, M.X., Appl. Phys. Lett. 74, 1803 (1999).CrossRefGoogle Scholar
15.Wang, W.H., Wen, P., Zhao, D.Q., and Wang, J., Appl. Phys. Lett. 79, 3947 (2001).CrossRefGoogle Scholar
16.Schreiber, D., Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973).Google Scholar
17.Angell, C.A., J. Am. Ceram. Soc. 51, 117 (1968).CrossRefGoogle Scholar
18.Schnaus, U.E., Moynihan, C.T., and Macedo, P.D., Phys. Chem. Glasses 11, 213 (1970).Google Scholar
19.Lu, Z.P., Goh, T.T., Li, Y., and Ng, S.C., Acta Mater. 47, 2215 (1999).CrossRefGoogle Scholar
20.Kittel, C., Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York, 1986).Google Scholar
21.Girifalco, L.A., Statistical Physical of Materials (Wiley, New York, 1973), p. 78.Google Scholar
22.Chen, H.S. and Turnbull, D., Appl. Phys. Lett. 10, 284 (1967).CrossRefGoogle Scholar
23.Chen, H.S., Krause, J.T., and Coleman, E., J. Non-Cryst. Solids 18, 157 (1975).CrossRefGoogle Scholar
24.Lambson, E.F., Lambson, W.A., Macdonald, J.E., Gibbs, M.R.J., Saunders, G.A., and Turnbull, D., Phys. Rev. B 33, 2380 (1986).CrossRefGoogle Scholar
25.Golding, B., Bagley, B.G., and Hsu, F.S.L., Phys. Rev. Lett. 29, 68 (1972).CrossRefGoogle Scholar
26.Malinovsky, V.K. and Novikov, V.N., J. Phys Condens. Matter 4, L139 (1992).CrossRefGoogle Scholar
27.Novikov, V.N., Rossler, E.R., Malinovsky, V.K., and Surovtsev, N.V., Europhys. Lett. 35, 289 (1996).Google Scholar
28.Jiang, Q., Shi, H.X., and Li, J.C., Thin Solid Films 354, 283 (1999).Google Scholar
29.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
30.Inoue, A. and Takeuchi, A., Mater. Trans. JIM 43, 1892 (2002).CrossRefGoogle Scholar
31.Li, Y., Script Mater. 36, 783 (1997).Google Scholar
32.Schroers, J., Masuhr, A., Johnson, W.L., and Busch, R., Phys. Rev. B 60, 11855 (1999).CrossRefGoogle Scholar
33.Johnson, W.L. (unpublished).Google Scholar
34.Angell, A.C., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W.. J. Appl. Phys. 88, 3113 (2000).Google Scholar