Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T20:57:24.421Z Has data issue: false hasContentIssue false

Reduced splashing effect in laser ablated superconducting thin films formed from a melt-quenched nonsuperconducting amorphous target

Published online by Cambridge University Press:  31 January 2011

E. Agostinelli
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
J. Bohandy
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
W. J. Green
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
B. F. Kim
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
F. J. Adrian
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
K. Moorjani
Affiliation:
The Milton S. Eisenhower Research Center, The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723
Get access

Abstract

Comparison of superconducting thin films of Bi–Sr–Ca–Cu–O deposited by laser ablation from a melt-quenched, amorphous, nonsuperconducting target and a polycrystalline sintered superconducting target shows that they have similar superconducting properties, but the melt-quenched target yields a much smoother film. Additionally, the melt-quenched target is much easier to prepare with target preparation time reduced by a factor of twenty-five.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cheung, J. T. and Sankur, H., CRC Critical Reviews in Solid State and Materials Sciences 15, 63 (1988).CrossRefGoogle Scholar
2Barr, W. P., J. Phys. E 2, 2 (1969).Google Scholar
3Lubben, D., Barnett, S. A., Suzuki, K., Gorbatkin, S., and Greene, J. E., J. Vac. Sci. Technol. B3 968 (1985).CrossRefGoogle Scholar
4Gaponov, S. V., Gudkov, A. A., and Fraerman, A. A., Sov. Phys. Tech. Phys. 27, 1130 (1982).Google Scholar
5Itoh, T., Nakamura, T., Muromuihi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 16 553 (1977).Google Scholar
6Komatsu, T., Sato, R., Imai, K., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L550 (1988).Google Scholar
7Yoshimura, M., Sung, T., Ishizawa, N., and Nakagawa, Z., Jpn. J. Appl. Phys. 28, L424 (1989).Google Scholar
8Kanai, T., Kumagai, T., Soeta, A., Suzuki, T., Aihari, K., Kamo, T., and Matsuda, S., Jpn. J. Appl. Phys. 27, L1435 (1988).Google Scholar
9Deshmukh, S., Rothe, E. W., Reck, G. P., Kushida, T., and Xu, Z. G., Appl. Phys. Lett. 53, 2698 (1988).CrossRefGoogle Scholar
10Kim, B. F., Bohandy, J., Moorjani, K., and Adrian, F. J., J. Appl. Phys. 63, 2029 (1988).Google Scholar
11Bohandy, J., Kim, B. F., Adrian, F. J., and Moorjani, K., Phys. Rev. B 39, 2733 (1989); K. Moorjani, B. F. Kim, J. Bohandy, and F. J. Adrian, Rev. Sol. State Sci. 2, 263 (1988); B. F. Kim, J. Bohandy, T. E. Phillips, W. J. Green, E. Agostinelli, F. J. Adrian, K. Moorjani, L. J. Swartzendruber, R. D. Shull, L. H. Bennett, and J. S. Wallace, Appl. Phys. Lett. 53, 321 (1988).CrossRefGoogle Scholar
12Agostinelli, E., Bohandy, J., Green, W. J., Phillips, T. E., Kim, B. F., Adrian, F. J., and Moorjani, K., J. Mater. Res. 4, 1103 (1989).Google Scholar
13Kim, B. F., Bohandy, J., Phillips, T. E., Adrian, F. J., and Moorjani, K., Physica C 161, 76 (1989).Google Scholar