Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T22:33:28.079Z Has data issue: false hasContentIssue false

Rechargeable Mg–Li hybrid batteries: status and challenges

Published online by Cambridge University Press:  23 September 2016

Yingwen Cheng
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hee Jung Chang
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hui Dong
Affiliation:
Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
Daiwon Choi
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Vincent L. Sprenkle
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Jun Liu
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Yan Yao*
Affiliation:
Department of Electrical and Computer Engineering and Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
Guosheng Li*
Affiliation:
Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
*
b) e-mail: [email protected]
a) Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A magnesium–lithium (Mg–Li) hybrid battery consists of an Mg metal anode, a Li+ intercalation cathode, and a dual-salt electrolyte with both Mg2+ and Li+ ions. The demonstration of this technology has appeared in literature for few years and great advances have been achieved in terms of electrolytes, various Li cathodes, and cell architectures. Despite excellent battery performances including long cycle life, fast charge/discharge rate, and high Coulombic efficiency, the overall research of Mg–Li hybrid battery technology is still in its early stage, and also raised some debates on its practical applications. In this regard, we focus on a comprehensive overview of Mg–Li hybrid battery technologies developed in recent years. Detailed discussion of Mg–Li hybrid operating mechanism based on experimental results from literature helps to identify the current status and technical challenges for further improving the performance of Mg–Li hybrid batteries. Finally, a perspective for Mg–Li hybrid battery technologies is presented to address strategic approaches for existing technical barriers that need to be overcome in future research direction.

Type
Review
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451(7179), 652 (2008).CrossRefGoogle ScholarPubMed
Dunn, B., Kamath, H., and Tarascon, J.M.: Electrical energy storage for the grid: A battery of choices. Science 334(6058), 928 (2011).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33(4), 411 (2008).Google Scholar
Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., Lu, X.C., Choi, D.W., Lemmon, J.P., and Liu, J.: Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577 (2011).Google Scholar
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496 (2000).Google Scholar
Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D.: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4(9), 3243 (2011).Google Scholar
Goodenough, J.B.: Rechargeable batteries: Challenges old and new. J. Solid State Electrochem. 16(6), 2019 (2012).CrossRefGoogle Scholar
Liu, J.: Addressing the grand challenges in energy storage. Adv. Funct. Mater. 23(8), 924 (2013).Google Scholar
Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537 (2011).CrossRefGoogle ScholarPubMed
Augustyn, V., Come, J., Lowe, M.A., Kim, J.W., Taberna, P-L., Tolbert, S.H., Abruña, H.D., Simon, P., and Dunn, B.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013).Google Scholar
Ghidiu, M., Lukatskaya, M.R., Zhao, M-Q., Gogotsi, Y., and Barsoum, M.W.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78 (2014).Google Scholar
Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., and Schubert, U.S.: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527(7576), 78 (2015).Google Scholar
Li, B., Nie, Z., Vijayakumar, M., Li, G., Liu, J., Sprenkle, V., and Wang, W.: Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).Google Scholar
Li, G.S., Lu, X.C., Kim, J.Y., Meinhardt, K.D., Chang, H.J., Canfield, N.L., and Sprenkle, V.L.: Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).Google Scholar
Li, G.S., Lu, X.C., Kim, J.Y., Viswanathan, V.V., Meinhardt, K.D., Engelhard, M.H., and Sprenkle, V.L.: An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv. Energy Mater. 5(12), 1500357 (2015).Google Scholar
Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014).Google Scholar
Yang, Y., Zheng, G., and Cui, Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42(7), 3018 (2013).Google Scholar
Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P.: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350(6260), 530 (2015).Google Scholar
Lu, D., Shao, Y., Lozano, T., Bennett, W.D., Graff, G.L., Polzin, B., Zhang, J., Engelhard, M.H., Saenz, N.T., Henderson, W.A., Bhattacharya, P., Liu, J., and Xiao, J.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5(3), 1400993 (2015).CrossRefGoogle Scholar
Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K., and Cui, Y.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).CrossRefGoogle ScholarPubMed
Qian, J., Henderson, W.A., Xu, W., Bhattacharya, P., Engelhard, M., Borodin, O., and Zhang, J-G.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).Google Scholar
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7(2), 513 (2014).Google Scholar
Yan, K., Lu, Z., Lee, H-W., Xiong, F., Hsu, P-C., Li, Y., Zhao, J., Chu, S., and Cui, Y.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).Google Scholar
Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J., and Zhang, J-G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450 (2013).CrossRefGoogle ScholarPubMed
Muldoon, J., Bucur, C.B., and Gregory, T.: Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 114(23), 11683 (2014).Google Scholar
Aurbach, D., Markovsky, B., Weissman, I., Levi, E., and Ein-Eli, Y.: On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45(1–2), 67 (1999).Google Scholar
Stevens, D.A. and Dahn, J.R.: High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271 (2000).CrossRefGoogle Scholar
Slater, M.D., Kim, D., Lee, E., and Johnson, C.S.: Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947 (2013).Google Scholar
Zhao, L., Hu, Y.S., Li, H., Wang, Z.X., and Chen, L.Q.: Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 23(11), 1385 (2011).Google Scholar
Liang, Y., Yoo, H.D., Li, Y., Shuai, J., Calderon, H.A., Robles Hernandez, F.C., Grabow, L.C., and Yao, Y.: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15(3), 2194 (2015).Google Scholar
Vesborg, P.C.K. and Jaramillo, T.F.: Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933 (2012).Google Scholar
Cheng, Y., Parent, L.R., Shao, Y., Wang, C., Sprenkle, V.L., Li, G., and Liu, J.: Facile synthesis of Chevrel phase nanocubes and their applications for multivalent energy storage. Chem. Mater. 26(17), 4904 (2014).Google Scholar
Cheng, Y., Shao, Y., Parent, L.R., Sushko, M.L., Li, G., Sushko, P.V., Browning, N.D., Wang, C., and Liu, J.: Interface promoted reversible Mg insertion in nanostructured Tin–Antimony alloys. Adv. Mater. 27(42), 6598 (2015).Google Scholar
Cheng, Y., Shao, Y., Raju, V., Ji, X., Mehdi, B.L., Han, K.S., Engelhard, M.H., Li, G., Browning, N.D., Mueller, K.T., and Liu, J.: Molecular storage of Mg ions with vanadium oxide nanoclusters. Adv. Funct. Mater. 26(20), 3446 (2016).Google Scholar
Bucur, C.B., Gregory, T., Oliver, A.G., and Muldoon, J.: Confession of a magnesium battery. J. Phys. Chem. Lett. 6(18), 3578 (2015).Google Scholar
Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., and Aurbach, D.: Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6(8), 2265 (2013).Google Scholar
Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., and Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724 (2000).Google Scholar
Mizrahi, O., Amir, N., Pollak, E., Chusid, O., Marks, V., Gottlieb, H., Larush, L., Zinigrad, E., and Aurbach, D.: Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J. Electrochem. Soc. 155(2), A103 (2008).Google Scholar
Liu, T., Shao, Y., Li, G., Gu, M., Hu, J., Xu, S., Nie, Z., Chen, X., Wang, C., and Liu, J.: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2(10), 3430 (2014).Google Scholar
Doe, R.E., Han, R., Hwang, J., Gmitter, A.J., Shterenberg, I., Yoo, H.D., Pour, N., and Aurbach, D.: Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50(2), 243 (2014).Google Scholar
Cheng, Y., Stolley, R.M., Han, K.S., Shao, Y., Arey, B.W., Washton, N.M., Mueller, K.T., Helm, M.L., Sprenkle, V.L., Liu, J., and Li, G.: Highly active electrolytes for rechargeable Mg batteries based on a [Mg2([small mu]-Cl)2]2+ cation complex in dimethoxyethane. Phys. Chem. Chem. Phys. 17(20), 13307 (2015).CrossRefGoogle Scholar
Zhao-Karger, Z., Mueller, J.E., Zhao, X.Y., Fuhr, O., Jacob, T., and Fichtner, M.: Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Adv. 4(51), 26924 (2014).Google Scholar
Tutusaus, O., Mohtadi, R., Arthur, T.S., Mizuno, F., Nelson, E.G., and Sevryugina, Y.V.: An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem., Int. Ed. 54(27), 7900 (2015).Google Scholar
McArthur, S.G., Geng, L.X., Guo, J.C., and Lavallo, V.: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2(12), 1101 (2015).Google Scholar
Levi, E., Gofer, Y., and Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860 (2010).CrossRefGoogle Scholar
Nam, K.W., Kim, S., Lee, S., Salama, M., Shterenberg, I., Gofer, Y., Kim, J-S., Yang, E., Park, C.S., Kim, J-S., Lee, S-S., Chang, W-S., Doo, S-G., Jo, Y.N., Jung, Y., Aurbach, D., and Choi, J.W.: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071 (2015).Google Scholar
Shterenberg, I., Salama, M., Gofer, Y., Levi, E., and Aurbach, D.: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39(5), 453 (2014).Google Scholar
Lu, Z., Schechter, A., Moshkovich, M., and Aurbach, D.: On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466(2), 203 (1999).Google Scholar
Gregory, T.D., Hoffman, R.J., and Winterton, R.C.: Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 137(3), 775 (1990).Google Scholar
Aurbach, D., Gizbar, H., Schechter, A., Chusid, O., Gottlieb, H.E., Gofer, Y., and Goldberg, I.: Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J. Electrochem. Soc. 149(2), A115 (2002).CrossRefGoogle Scholar
Wang, F-f., Guo, Y-s., Yang, J., Nuli, Y., and Hirano, S-i.: A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48(87), 10763 (2012).Google Scholar
Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., Oliver, A.G., Boggess, W.C., and Muldoon, J.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).Google Scholar
Yagi, S., Ichitsubo, T., Shirai, Y., Yanai, S., Doi, T., Murase, K., and Matsubara, E.: A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2(4), 1144 (2014).Google Scholar
Cheng, Y., Shao, Y., Zhang, J-G., Sprenkle, V.L., Liu, J., and Li, G.: High performance batteries based on hybrid magnesium and lithium chemistry. Chem. Commun. 50(68), 9644 (2014).Google Scholar
Cho, J-H., Aykol, M., Kim, S., Ha, J-H., Wolverton, C., Chung, K.Y., Kim, K-B., and Cho, B-W.: Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136(46), 16116 (2014).Google Scholar
Yoo, H.D., Liang, Y., Li, Y., and Yao, Y.: High areal capacity hybrid magnesium–lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl. Mater. Interfaces 7(12), 7001 (2015).Google Scholar
Yao, H.R., You, Y., Yin, Y.X., Wan, L.J., and Guo, Y.G.: Rechargeable dual-metal-ion batteries for advanced energy storage. Phys. Chem. Chem. Phys. 18(14), 9326 (2016).Google Scholar
Yoo, H.D., Shterenberg, I., Gofer, Y., Doe, R.E., Fischer, C.C., Ceder, G., and Aurbach, D.: A magnesium-activated carbon hybrid capacitor. J. Electrochem. Soc. 161(3), A410 (2014).Google Scholar
Shao, Y.Y., Liu, T.B., Li, G.S., Gu, M., Nie, Z.M., Engelhard, M., Xiao, J., Lv, D.P., Wang, C.M., Zhang, J.G., and Liu, J.: Coordination chemistry in magnesium battery electrolytes: How ligands affect their performance. Sci. Rep. 3, 3130 (2013).Google Scholar
Cheng, Y.W., Choi, D.W., Han, K.S., Mueller, K.T., Zhang, J.G., Sprenkle, V.L., Liu, J., and Li, G.S.: Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes. Chem. Commun. 52(31), 5379 (2016).Google Scholar
Cheng, Y., Liu, T., Shao, Y., Engelhard, M.H., Liu, J., and Li, G.: Electrochemically stable cathode current collectors for rechargeable magnesium batteries. J. Mater. Chem. A 2(8), 2473 (2014).Google Scholar
Yagi, S., Tanaka, A., Ichikawa, Y., Ichitsubo, T., and Matsubara, E.: Electrochemical stability of magnesium battery current collectors in a Grignard reagent-based electrolyte. J. Electrochem. Soc. 160(3), C83 (2013).Google Scholar
Levi, M.D., Lancry, E., Gizbar, H., Lu, Z., Levi, E., Gofer, Y., and Aurbach, D.: Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 Chevrel phase. J. Electrochem. Soc. 151(7), A1044 (2004).Google Scholar
Hsu, C-J., Chou, C-Y., Yang, C-H., Lee, T-C., and Chang, J-K.: MoS2/graphene cathodes for reversibly storing Mg2+ and Mg2+/Li+ in rechargeable magnesium-anode batteries. Chem. Commun. 52(8), 1701 (2016).CrossRefGoogle Scholar
Gao, T., Han, F.D., Zhu, Y.J., Suo, L.M., Luo, C., Xu, K., and Wang, C.S.: Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv. Energy Mater. 5(5), 1401507 (2015).CrossRefGoogle Scholar
Su, S., Huang, Z., NuLi, Y., Tuerxun, F., Yang, J., and Wang, J.: A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51(13), 2641 (2015).Google Scholar
Su, S., NuLi, Y., Huang, Z., Miao, Q., Yang, J., and Wang, J.: A high-performance rechargeable Mg2+/Li+ hybrid battery using one-dimensional mesoporous TiO2(B) nanoflakes as the cathode. ACS Appl. Mater. Interfaces 8(11A), 7111 (2016).CrossRefGoogle ScholarPubMed
Miao, Q., NuLi, Y., Wang, N., Yang, J., Wang, J., and Hirano, S-i.: Effect of Mg2+/Li+ mixed electrolytes on a rechargeable hybrid battery with Li4Ti5O12 cathode and Mg anode. RSC Adv. 6(4), 3231 (2016).CrossRefGoogle Scholar
Pan, W.J., Liu, X.L., Miao, X.W., Yang, J., Wang, J.L., Nuli, Y., and Hirano, S.: Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. J. Solid State Electrochem. 19(11), 3347 (2015).Google Scholar
Wu, N., Yang, Z.Z., Yao, H.R., Yin, Y.X., Gu, L., and Guo, Y.G.: Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew. Chem., Int. Ed. 54(19), 5757 (2015).Google Scholar
Shi, Y.F., Guo, B.K., Corr, S.A., Shi, Q.H., Hu, Y.S., Heier, K.R., Chen, L.Q., Seshadri, R., and Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9(12), 4215 (2009).Google Scholar
Zhang, Y., Xie, J., Han, Y., and Li, C.: Dual-salt Mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25(47), 7300 (2015).Google Scholar
Gao, T., Noked, M., Pearse, A.J., Gillette, E., Fan, X., Zhu, Y., Luo, C., Suo, L., Schroeder, M.A., Xu, K., Lee, S.B., Rubloff, G.W., and Wang, C.: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137(38), 12388 (2015).Google Scholar
Zhao-Karger, Z., Zhao, X.Y., Wang, D., Diemant, T., Behm, R.J., and Fichtner, M.: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5(3), 1401155 (2015).Google Scholar
Chang, Z., Yang, Y.Q., Wang, X.W., Li, M.X., Fu, Z.W., Wu, Y.P., and Holze, R.: Hybrid system for rechargeable magnesium battery with high energy density. Sci. Rep. 5, 11931 (2015).Google Scholar
Zhang, Z.H., Xu, H.M., Cui, Z.L., Hu, P., Chai, J.C., Du, H.P., He, J.J., Zhang, J.J., Zhou, X.H., Han, P.X., Cui, G.L., and Chen, L.Q.: High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A 4(6), 2277 (2016).Google Scholar
Ichitsubo, T., Okamoto, S., Kawaguchi, T., Kumagai, Y., Oba, F., Yagi, S., Goto, N., Doi, T., and Matsubara, E.: Toward “rocking-chair type” Mg–Li dual-salt batteries. J. Mater. Chem. A. 3(19), 10188 (2015).Google Scholar
Sun, X., Duffort, V., and Nazar, L.F.: Prussian blue Mg–Li hybrid batteries. Adv. Sci. 4, 1600044 (2016). doi: 10.1002/advs.201600044.CrossRefGoogle Scholar
Suo, L.M., Hu, Y.S., Li, H., Armand, M., and Chen, L.Q.: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).Google Scholar
Walter, M., Kraychyk, K.V., Ibanez, M., and Koyalenko, M.V.: Efficient and inexpensive sodium–magnesium hybrid battery. Chem. Mater. 27(21), 7452 (2015).Google Scholar
Dong, H., Li, Y.F., Li, G.S., Sun, C.J., Ren, Y., Lu, Y.H., and Yao, Y.: A magneisum–sodium hybrid battery with high operating voltage. Chem. Commun. 52(31), 8263 (2016).Google Scholar