Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:32:44.494Z Has data issue: false hasContentIssue false

Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure

Published online by Cambridge University Press:  06 July 2017

A.K. Gangopadhyay*
Affiliation:
Department of Physics and Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
K.F. Kelton
Affiliation:
Department of Physics and Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The advent of containerless processing techniques has opened the possibility of high quality measurements of equilibrium and metastable liquids. This review focuses on the structure and dynamics of metallic liquids at high temperature. A clear connection between structure, viscosity, and fragility has emerged from recent containerless experiments and molecular dynamics simulation studies. The temperature-dependent changes of liquid structures are smaller for the stronger liquids. The onset of cooperativity usually occurs above the liquidus temperature at a characteristic temperature T A, where the dynamics change from Arrhenius to non-Arrhenius behavior; this is accompanied by the onset of development of more spatially extended structural order in the liquids. Several metrics for fragility, consistent with the traditional fragility parameter, can be developed from the structural and dynamical properties at high temperature. It is becoming increasingly evident from theory and experiments that the fundamental properties that determine fragility are the repulsive part of the interatomic potential and the anharmonicity.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Himanshu Jain

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Cohen, M.H. and Turnbull, D.: Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131 (1961).CrossRefGoogle Scholar
Grant, N.J. and Giessen, B.C., eds.: Rapidly Quenched Metals: Second International Conference (MIT Press, Cambridge, Mass, 1976).Google Scholar
Koch, C.C.: Materials synthesis by mechanical alloying. Annu. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
Nolfi, F.V. Jr.: Phase Transformations During Irradiation (Applied Science Publishers, London, 1983).Google Scholar
Bhat, M.H., Molinero, V., Soignard, E., Solomon, V.C., Sastry, S., Yarger, J.L., and Angell, C.A.: Vitrification of a monatomic metallic liquid. Nature 448, 787 (2007).CrossRefGoogle ScholarPubMed
Magnan, H., Chandesris, D., Rossi, G., Jezequel, G., Hricovini, K., and Lecante, J.: Determination of local order in amorphous cobalt films. Phys. Rev. B 40, 9989 (1989).CrossRefGoogle ScholarPubMed
Kim, Y-W., Lin, H-M., and Kelly, T.F.: Amorphous solidification of pure metals in submicron spheres. Acta Metall. 37, 247 (1989).CrossRefGoogle Scholar
Zhong, L., Wang, J., Sheng, H., Zhang, Z., and Mao, S.X.: Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177 (2014).CrossRefGoogle ScholarPubMed
Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).CrossRefGoogle ScholarPubMed
Durbin, S.D. and Fehrer, G.: Protein crystallization. Ann. Rev. Phys. Chem. 47, 171 (1996).CrossRefGoogle ScholarPubMed
Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
Kui, H.W., Greer, A.L., and Turnbull, D.: Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
Inoue, A., Matsumoto, N., and Masumoto, T.: Al–Ni–Co–Y amorphous alloys with high mechanical strengths, wide supercooled liquid regions and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).CrossRefGoogle Scholar
Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 . Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
Trexler, M.M. and Thadhani, N.N.: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).CrossRefGoogle Scholar
Scully, J.R., Gebert, A., and Payer, J.H.: Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302 (2007).CrossRefGoogle Scholar
McHenry, M.E., Willard, M.A., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).CrossRefGoogle Scholar
Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).CrossRefGoogle Scholar
Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).CrossRefGoogle Scholar
Gangopadhyay, A.K., Lee, G.W., Kelton, K.F., Rogers, J.R., Goldman, A.I., Robinson, D.S., Rathz, T.J., and Hyers, R.W.: Beamline electrostatic levitator for in situ high energy X-ray diffraction studies of levitated solids and liquids. Rev. Sci. Instrum. 76, 073901 (2005).CrossRefGoogle Scholar
Mauro, N.A. and Kelton, K.F.: A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy X-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011).CrossRefGoogle ScholarPubMed
Rhim, W-K., Chung, S.K., Barber, D., Man, K.F., Gutt, G., Rulison, A., and Spjut, R.E.: An electrostatic levitator for high-temperature containerless materials processing in l g. Rev. Sci. Instrum. 64, 2961 (1993).CrossRefGoogle Scholar
Gao, L., Shi, Z., Li, D., Zhang, G., Yang, Y., Mclean, A., and Chattopadhyay, K.: Applications of electromagnetic levitation and development of mathematical models: A review of the last 15 years (2000 to 2015). Metall. Mater. Trans. B 47, 537 (2016).CrossRefGoogle Scholar
Weber, J.K.R., Hampton, D.S., Morkloy, D.R., Rey, C.A., Zatarski, M.M., and Nordine, P.C.: Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456 (2005).CrossRefGoogle Scholar
Kelton, K.F.: Kinetic and structural fragility—A correlation between structures and dynamics in metallic liquids and glasses. J. Phys.: Condens. Matter 29, 023002 (2017).Google ScholarPubMed
Martinez, L-M. and Angell, C.A.: A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 (2001).CrossRefGoogle Scholar
Angell, C.A.: Strong and fragile liquids. In Relaxations in Complex Systems, Ngai, K.L. and Wright, G.B., eds. (U.S. GPO, Washington, D.C., 1985); p. 3.Google Scholar
Blodgett, M.E., Egami, T., Nussinov, Z., and Kelton, K.F.: Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5, 13837 (2015).CrossRefGoogle ScholarPubMed
Sokolov, A.P., Kisliuk, A., Quitmann, D., Kudlik, A., and Rossler, E.: The dynamics of strong and fragile glass formers: Vibrational and relaxation contributions. J. Non-Cryst. Solids 172–174, 138 (1994).CrossRefGoogle Scholar
Vogel, H.: The temperature dependence law of the viscosity of fluids. Z. Phys. 22, 645 (1921).Google Scholar
Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
Tammann, G. and Hesse, W.Z.: The temperature dependence of viscosity of undercooled liquids. Anorg. Allgem. Chem. 156, 245 (1926).CrossRefGoogle Scholar
Richert, R. and Angell, C.A.: Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016 (1998).CrossRefGoogle Scholar
Hecksher, T., Nielsen, A.I., Olsen, N.B., and Dyre, J.C.: Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat. Phys. 4, 737 (2008).CrossRefGoogle Scholar
Mauro, J.C., Yueb, Y., Ellisona, A.J., Gupta, P.K., and Allan, D.C.: Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. U. S. A. 24, 19780 (2009).CrossRefGoogle Scholar
Gibbs, J.H.: Nature of the glass transition in polymers. J. Chem. Phys. 25, 185 (1956).Google Scholar
Adam, G. and Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
Goldstein, M.: Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition. J. Phys. Chem. 77, 667 (1973).CrossRefGoogle Scholar
Johari, G.P.: An equilibrium supercooled liquid’s entropy and enthalpy in the Kauzmann and the third law extrapolations, and a proposed experimental resolution. J. Chem. Phys. 113, 751 (2000).CrossRefGoogle Scholar
Johari, G.P.: The entropy loss on supercooling a liquid and anharmonic contributions. J. Chem. Phys. 116, 2043 (2002).CrossRefGoogle Scholar
Ito, K., Moynihan, C.T., and Angell, C.A.: Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492 (1999).CrossRefGoogle Scholar
Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
Tanaka, H.: Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 90, 055701 (2003).CrossRefGoogle ScholarPubMed
Tanaka, H.: Possible resolution of the Kauzmann paradox in supercooled liquids. Phys. Rev. E 68, 011505 (2003).CrossRefGoogle ScholarPubMed
Stillinger, F.H., Debenedetti, P.G., and Truskett, T.M.: The Kauzmann paradox revisited. J. Phys. Chem. B 105, 11809 (2001).CrossRefGoogle Scholar
Wang, L-M., Velikov, V., and Angell, C.A.: Direct determination of kinetic fragility indices of glass forming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities. J. Chem. Phys. 117, 10184 (2002).CrossRefGoogle Scholar
Huang, D. and McKenna, G.B.: New insights into the fragility dilemma in liquids. J. Chem. Phys. 111, 5621 (2001).CrossRefGoogle Scholar
Wang, L-M., Angell, C.A., and Richert, R.: Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).CrossRefGoogle ScholarPubMed
Xia, X. and Wolynes, P.G.: Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl. Acad. Sci. U. S. A. 97, 2990 (2000).CrossRefGoogle ScholarPubMed
Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).CrossRefGoogle ScholarPubMed
Egry, I., Lohofer, G., Seyhan, I., Schneider, S., and Feuerbacher, B.: Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462 (1998).CrossRefGoogle Scholar
Mukherjee, S., Schroers, J., Zhou, Z., Johnson, W.L., and Rhim, W-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689 (2004).CrossRefGoogle Scholar
Fan, G.J., Freels, M., Choo, H., Liaw, P.K., Li, J.J.Z., Rhim, W-K., Johnson, W.L., Yu, P., and Wang, W.H.: Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Appl. Phys. Lett. 89, 241917 (2006).CrossRefGoogle Scholar
Holland-Moritz, D., Stüber, S., Hartmann, H., Unruh, T., Hansen, T., and Meyer, A.: Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Phys. Rev. B 79, 064204 (2009).CrossRefGoogle Scholar
Brillo, J., Pommrich, A.I., and Meyer, A.: Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys. Rev. Lett. 107, 165902 (2011).CrossRefGoogle ScholarPubMed
Yuan, C.C., Yang, F., Kargl, F., Holland-Moritz, D., Simeoni, G.G., and Meyer, A.: Atomic dynamics in Zr–(Co,Ni)–Al metallic glass-forming liquids. Phys. Rev. B 91, 214203 (2015).CrossRefGoogle Scholar
Rhim, W-K., Ohsaka, K., Paradis, P-F., and Spjut, R.E.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999).CrossRefGoogle Scholar
Gangopadhyay, A.K., Pueblo, C.E., Johnson, M.L., Dai, R., Aschcraft, R., Van Hoesen, D., Sellers, M., and Kelton, K.F.: Connection of fragility of metallic liquids with cohesive energy and high temperature structural evolution. J. Chem. Phys. 146, 154506 (2017).CrossRefGoogle Scholar
Sipp, A., Bottinga, Y., and Richet, P.: New viscosity data for 3D network liquids and new correlations between old parameters. J. Non-Cryst. Solids 288, 166 (2001).CrossRefGoogle Scholar
Weingartner, N.B., Pueblo, C., Nogueira, F.S., Kelton, K.F., and Nussinov, Z.: A phase space approach to supercooled liquids and a universal collapse of their viscosity. Front. Mater. 3, 50 (2016).CrossRefGoogle Scholar
Tsang, K.H. and Kui, H.W.: Viscosity of molten Pd82Si18 and the scaling of viscosities of glass forming systems. J. Appl. Phys. 72, 93 (1992).CrossRefGoogle Scholar
Schroeter, K. and Donth, E.: Viscosity and shear response at the dynamic glass transition of glycerol. J. Chem. Phys. 113, 9101 (2000).CrossRefGoogle Scholar
Parks, G.S., Barton, L.E., Spaght, M.E., and Richardson, J.W.: The viscosity of undercooled liquid glucose. J. Appl. Phys. 5, 193 (1934).Google Scholar
Laughlin, W.T. and Uhlmann, D.R.: Viscous flow in simple organic fluids. J. Phys. Chem. 76, 2317 (1972).CrossRefGoogle Scholar
Russew, K., Stojanova, L., Yankova, S., Fazakas, E., and Varga, L.K.: Thermal behavior and melt fragility number of Cu100−x Zr x glassy alloys in terms of crystallization and viscous flow. J. Phys.: Conf. Ser. 144, 012094 (2009).Google Scholar
Johnson, W.L., Na, J.H., and Demetrieu, M.D.: Quantifying the origin of metallic glass formation. Nat. Commun. 7, 10313 (2016).CrossRefGoogle ScholarPubMed
Mallamace, F., Branca, C., Corsaro, C., Leone, N., Spooren, J., Chen, S-H., and Stanley, H.E.: Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. U. S. A. 107, 22457 (2010).CrossRefGoogle ScholarPubMed
Schmidtke, B., Petzold, N., Kahlau, R., and Rössler, E.A.: Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature. J. Chem. Phys. 139, 084504 (2013).CrossRefGoogle ScholarPubMed
Iwashita, T., Nicholson, D.M., and Egami, T.: Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013).CrossRefGoogle ScholarPubMed
Hu, Y.C., Li, F.X., Li, M.Z., Bai, H.Y., and Wang, W.H.: Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids. J. Appl. Phys. 119, 205108 (2016).CrossRefGoogle Scholar
Fan, Y., Iwashita, T., and Egami, T.: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).CrossRefGoogle ScholarPubMed
Jaiswal, A., Egami, T., Kelton, K.F., Schweizer, K.S., and Zhang, Y.: Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys. Rev. Lett. 117, 205701 (2016).CrossRefGoogle ScholarPubMed
Sastry, S., Debenedetti, P.G., and Stillinger, F.H.: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).CrossRefGoogle Scholar
Garrahan, J.P. and Chandler, D.: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. U. S. A. 100, 9710 (2003).CrossRefGoogle ScholarPubMed
Gotze, W. and Sjogren, L.: Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241 (1992).Google Scholar
Xua, Y., Petrika, N.G., Scott Smith, R., Kaya, B.D., and Kimmela, G.A.: Growth rate of supercooled ice and the diffusivity of supercooled water from 126 to 262 K. Proc. Natl. Acad. Sci. U. S. A. 113, 14921 (2016).CrossRefGoogle Scholar
McMillan, P.F., Wilson, M., Wilding, M.C., Daisenberger, D., Mezouar, M., and Greaves, G.N.: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory. J. Phys.: Condens. Matter 19, 415101 (2007).Google ScholarPubMed
Zhang, C., Hu, L., Yue, Y., and Mauro, J.C.: Fragile to strong transition in metallic glass-forming liquids. J. Chem. Phys. 133, 014508 (2010).CrossRefGoogle ScholarPubMed
Georgarakis, K., Hennet, L., Evangelakis, G.A., Antonowicz, J., Bokas, G.B., and Honkimaki, V.: Probing the structure of a liquid metal during vitrification. Acta Mater. 87, 174 (2015).CrossRefGoogle Scholar
Stolpe, M., Jonas, I., Wei, S., Evenson, Z., Hembree, W., Yang, F., Meyer, A., and Busch, R.: Structural changes during a liquid–liquid transition in the deeply undercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming melt. Phys. Rev. B 93, 014201 (2016).CrossRefGoogle Scholar
Li, L., Schroers, J., and Wu, Y.: Crossover of microscopic dynamics in metallic supercooled liquid observed by NMR. Phys. Rev. Lett. 91, 265502 (2003).CrossRefGoogle ScholarPubMed
Lan, S., Blodgett, M., Kelton, K.F., Ma, J.L., Fan, J., and Wang, X-L.: Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl. Phys. Lett. 108, 211907 (2016).CrossRefGoogle Scholar
Bernal, J.D.: The structure of liquids. Proc. R. Soc. London, Ser. A 280, 299 (1964).Google Scholar
Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
Ma, E.: Turning order into disorder. Nat. Mater. 14, 547 (2015).CrossRefGoogle Scholar
Cheng, Y.Q., Sheng, H.W., and Ma, E.: Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008).CrossRefGoogle Scholar
Ding, J., Cheng, Y-Q., and Ma, E.: Full icosahedra dominate local order in Cu64Zr36 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).CrossRefGoogle Scholar
Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., and Robinson, D.S.: First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).CrossRefGoogle ScholarPubMed
Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., and Robinson, D.S.: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).CrossRefGoogle ScholarPubMed
Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, D.S., Goldman, A.I., and Kelton, K.F.: Local structure of equilibrium and supercooled Ti–Zr–Ni liquids. Phys. Rev. B 77, 184102 (2008).CrossRefGoogle Scholar
Wessels, V., Gangopadhyay, A.K., Sahu, K.K., Hyers, R.W., Canepari, S.M., Rogers, J.R., Kramer, M.J., Goldman, A.I., Robinson, D., Lee, J.W., Morris, J.R., and Kelton, K.F.: Rapid chemical and topological ordering in supercooled liquid Cu46Zr54 . Phys. Rev. B 83, 094116 (2011).CrossRefGoogle Scholar
Gangopadhyay, A.K., Blodgett, M.E., Johnson, M.L., Vogt, A.J., Mauro, N.A., and Kelton, K.F.: Thermal expansion measurements by X-ray scattering and breakdown of Ehrenfest’s relation in alloy liquids. Appl. Phys. Lett. 104, 191907 (2014).CrossRefGoogle Scholar
Gangopadhyay, A.K., Blodgett, M.E., Johnson, M.L., McKnight, J., Wessels, V., Vogt, A.J., Mauro, N.A., Bendert, J.C., Soklaski, R., Yang, L., and Kelton, K.F.: Anomalous thermal contraction of the first coordination shell in metallic alloy liquids. J. Chem. Phys. 140, 044505 (2014).CrossRefGoogle ScholarPubMed
Mauro, N.A., Johnson, M.L., Bendert, J.C., and Kelton, K.F.: Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses—A measure of liquid fragility. J. Non-Cryst. Solids 362, 237 (2013).CrossRefGoogle Scholar
Mauro, N.A., Vogt, A.J., Johnson, M.L., Bendert, J.C., and Kelton, K.F.: Anomalous structural evolution in Cu50Zr50 glass-forming liquids. Appl. Phys. Lett. 103, 021904 (2013).CrossRefGoogle Scholar
Mauro, N.A., Vogt, A.J., Johnson, M.L., Bendert, J.C., Soklaski, R., Yang, L., and Kelton, K.F.: Anomalous structural evolution and liquid fragility signatures in Cu–Zr and Cu–Hf liquids and glasses. Acta Mater. 61, 7411 (2013).CrossRefGoogle Scholar
Mauro, N.A., Blodgett, M., Johnson, M.L., Vogt, A.J., and Kelton, K.F.: A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014).CrossRefGoogle ScholarPubMed
Louzguine-Luzgin, D.V., Belosludov, R., Yavari, A.R., Georgarakis, K., Vaughan, G., Kawazoe, Y., Egami, T., and Inoue, A.: Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J. Appl. Phys. 110, 043519 (2011).CrossRefGoogle Scholar
Wei, S., Stolpe, M., Gross, O., Evenson, Z., Gallino, I., Hembree, W., Bednarcik, J., Kruzic, J., and Busch, R.: Linking structure to fragility in bulk metallic glass-forming liquids. Appl. Phys. Lett. 106, 181901 (2015).CrossRefGoogle Scholar
Ma, D., Stoica, A.D., and Wang, X-L.: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).CrossRefGoogle ScholarPubMed
Zenga, Q., Linb, Y., Liue, Y., Zenga, Z., Shib, C.Y., Zhang, B., Loua, H., Sinogeikin, S.V., Kono, Y., Bensong, C.K., Park, C., Yang, W., Wang, W., Sheng, H., Mao, H-K., and Mao, W.L.: General 2.5 power law of metallic glasses. Proc. Natl. Acad. Sci. U. S. A. 113, 1714 (2016).CrossRefGoogle Scholar
Chirawatkul, P., Zeidler, A., Salmon, P.S., Takeda, S., Kawakita, Y., Usuki, T., and Fischer, H.E.: Structure of eutectic liquids in the Au–Si, Au–Ge, and Ag–Ge binary systems by neutron diffraction. Phys. Rev. B 83, 014203 (2011).CrossRefGoogle Scholar
Lou, H., Wang, X., Cao, Q., Zhang, D., Zhang, J., Hu, T., Mao, H-K., and Jiang, J-Z.: Negative expansions of interatomic distances in metallic melts. Proc. Natl. Acad. Sci. U. S. A. 110, 10068 (2013).CrossRefGoogle ScholarPubMed
Ding, J., Xu, M., Guan, P.F., Deng, S.W., Cheng, Y.Q., and Ma, E.: Temperature effects on atomic pair distribution functions of melts. J. Chem. Phys. 140, 064501 (2014).CrossRefGoogle ScholarPubMed
Poulsen, H., Wert, J.A., Neuefeind, J., Honkimaki, V., and Daymond, M.: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 (2005).CrossRefGoogle Scholar
Hufnagel, T.C. and Ott, R.T.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).CrossRefGoogle Scholar
Dmowski, W., Iwashita, T., Chuang, C-P., Almer, J., and Egami, T.: Elastic heterogeneity in metallic glasses. Phys. Rev. Lett. 105, 205502 (2010).CrossRefGoogle ScholarPubMed
Baldi, G., Zanatta, M., Gilioli, E., Milman, V., Refson, K., Wehinger, B., Winkler, B., Fontana, A., and Monaco, G.: Emergence of crystal-like atomic dynamics in glasses at the nanometer scale. Phys. Rev. Lett. 110, 185503 (2013).CrossRefGoogle ScholarPubMed
Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015).CrossRefGoogle ScholarPubMed
McGreevy, R.L. and Wicks, J.D.: X-ray, electron and neutron diffraction. RMC: Modelling neutron diffraction, X-ray diffraction and EXAFS data simultaneously for amorphous materials. J. Non-Cryst. Solids 192–193, 23 (1995).Google Scholar
McGreevy, R.L.: Reverse Monte Carlo modelling. J. Phys.: Condens. Matter 13, R877 (2001).Google Scholar
Cheng, Y-Q. and Ma, E.: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).CrossRefGoogle Scholar
Jakse, N. and Pasturel, A.: Ab initio molecular dynamics simulations of local structure of supercooled Ni. J. Chem. Phys. 120, 6124 (2004).CrossRefGoogle ScholarPubMed
Hao, S.G., Kramer, M.J., Wang, C.Z., Ho, K.M., Nandi, S., Kreyssig, A., Goldman, A.I., Wessels, V., Sahu, K.K., Kelton, K.F., Hyers, R.W., Canepari, S.M., and Rogers, J.R.: Experimental and ab initio structural studies of liquid Zr2Ni. Phys. Rev. B 79, 104206 (2009).CrossRefGoogle Scholar
Zhang, Y., Mendelev, M.I., Wang, C.Z., and Kelton, K.F.: Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J. Chem. Phys. 145, 204505 (2016).CrossRefGoogle ScholarPubMed
Soklaski, R., Nussinov, Z., Markow, Z., Kelton, K.F., and Yang, L.: Connectivity of icosahedral network and a dramatically growing static length scale in Cu–Zr binary metallic glasses. Phys. Rev. B 87, 184203 (2013).CrossRefGoogle Scholar
Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M.: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).CrossRefGoogle ScholarPubMed
Cheng, Y.Q., Cao, A.J., and Ma, E.: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).CrossRefGoogle Scholar
Ding, J., Cheng, Y.Q., and Ma, E.: Correlating local structure with inhomogeneous elastic deformation in a metallic glass. Appl. Phys. Lett. 101, 121917 (2012).CrossRefGoogle Scholar
Iwashita, T. and Egami, T.: Atomic mechanism of flow in simple liquids under shear. Phys. Rev. Lett. 108, 196001 (2012).CrossRefGoogle ScholarPubMed
Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936).CrossRefGoogle Scholar
Soklaski, R., Tran, V., Nussinov, Z., Kelton, K.F., and Yang, L.: A locally preferred structure characterizes all dynamical regimes of a supercooled liquid. Philos. Mag. 96, 1212 (2016).CrossRefGoogle Scholar
Sastry, S.: The relationship between fragility, configurational entropy and potential energy landscape of glass-forming liquids. Nature 409, 164 (2001).CrossRefGoogle ScholarPubMed
Moreno, A.J., Buldyrev, S.V., La Nave, E., Saika-Voivod, I., Sciortino, F., Tartaglia, P., and Zaccarelli, E.: Energy landscape of a simple model for strong liquids. Phys. Rev. Lett. 95, 157802 (2005).CrossRefGoogle ScholarPubMed
Debenedetti, P.G., Truskett, T.M., and Lewis, C.P.: Theory of supercooled liquids and glasses: Energy landscape and statistical geometry perspectives. Adv. Chem. Eng. 28, 21 (2001).CrossRefGoogle Scholar
Stillinger, F.H.: A topological view of supercooled liquids and glass formation. Science 267, 1935 (1995).CrossRefGoogle Scholar
Born, M. and Green, H.S.: A general kinetic theory of liquids. III. Dynamical properties. Proc. R. Soc. London, Ser. A 190, 455 (1947).Google Scholar
Wallace, D.C.: Entropy of liquid metals. J. Chem. Phys. 87, 2282 (1987).CrossRefGoogle Scholar
Baranyai, A. and Evans, D.J.: Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817 (1989).CrossRefGoogle ScholarPubMed
Wallace, D.C.: Entropy of liquid metals. Proc. R. Soc. London, Ser. A 433, 615 (1991).Google Scholar
Dzugutov, M.: A universal scaling law for atomic diffusion in condensed matter. Nature 381, 137 (1996).CrossRefGoogle Scholar
Bartsch, A., Rätzke, K., Meyer, A., and Faupel, F.: Dynamic arrest in multicomponent glass-forming alloys. Phys. Rev. Lett. 104, 195901 (2010).CrossRefGoogle ScholarPubMed
Swallen, S.F., Traynor, K., McMahon, R.J., Ediger, M.D., and Mates, T.E.: Self-diffusion of supercooled tris-naphthylbenzene. J. Chem. Phys. 113, 4600 (2009).CrossRefGoogle ScholarPubMed
Laird, B.B. and Haymet, A.D.J.: Calculation of the entropy from multiparticle correlation functions. Phys. Rev. A 45, 5680 (1992).CrossRefGoogle ScholarPubMed
Coslovich, D.: Static triplet correlations in glass-forming liquids: A molecular dynamics study. J. Chem. Phys. 138, 12A539 (2013).CrossRefGoogle ScholarPubMed
Berthier, L. and Coslovich, D.: Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc. Natl. Acad. Sci. U. S. A. 111, 11668 (2014).CrossRefGoogle ScholarPubMed
Yokoyama, I. and Arai, T.: Correlation entropy and its relation to properties of liquid iron, cobalt, and nickel. J. Non-Cryst. Solids 293–295, 806 (2001).CrossRefGoogle Scholar
Paradis, P-F. and Rhim, W-K.: Thermophysical properties of zirconium at high temperature. J. Mater. Res. 14, 3713 (1999).CrossRefGoogle Scholar
Mountain, R.D. and Raveché, H.J.: Entropy and molecular correlation functions in open systems. II. Two and three body correlations. J. Chem. Phys. 55, 2250 (1971).CrossRefGoogle Scholar
de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in Metals-Transition Metal Alloys (North-Holland, Amsterdam, 1988).Google Scholar
Scopigno, T., Ruocco, G., and Sette, F.: Microscopic dynamics in liquid metals: The experimental point of view. Rev. Mod. Phys. 77, 881 (2005).CrossRefGoogle Scholar
Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Raetzke, K., Schober, H.R., Sharma, S.K., and Teichler, H.: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).CrossRefGoogle Scholar
Berthier, L., Biroli, G., Bouchaud, G-P., Cipelletti, L., El Masri, D., Hote, D.L., Ladieu, F., and Pierno, M.: Direct experimental evidence for a growing length scale accompanying the glass transition. Science 310, 1797 (2005).CrossRefGoogle ScholarPubMed
Mittal, J., Errington, J.R., and Truskett, T.M.: Relationship between thermodynamics and dynamics of supercooled liquids. J. Chem. Phys. 125, 076102 (2006).CrossRefGoogle ScholarPubMed
Xu, W-S. and Freed, K.F.: Influence of cohesive energy and chain stiffness on polymer glass formation. Macromolecules 47, 6990 (2014).CrossRefGoogle Scholar
Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. London 157, 49 (1867).Google Scholar
Nemilov, S.V.: Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids. J. Non-Cryst. Solids 352, 2715 (2006).CrossRefGoogle Scholar
Dyre, J.C.: Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953 (2006).CrossRefGoogle Scholar
Kittel, C.: Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996); p. 57.Google Scholar
Slater, J.C.: Compressibility of the alkali halides. Phys. Rev. 23, 488 (1924).CrossRefGoogle Scholar
Bennett, C.H., Polk, D.E., and Turnbull, D.: Role of composition in metallic glass formation. Acta Metall. 19, 1295 (1971).CrossRefGoogle Scholar
Bordat, P., Affouard, F., Descamps, M., and Ngai, K.L.: Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).CrossRefGoogle ScholarPubMed
Sengupta, S., Vasconcelos, F., Affouard, F., and Sastry, S.: Dependence of the fragility of a glass former on the softness of interparticle interactions. J. Chem. Phys. 135, 194503 (2011).CrossRefGoogle Scholar
Shi, Z., Debenedetti, P.G., Stillinger, F.H., and Ginart, P.: Structure, dynamics, and thermodynamics of a family of potentials with tunable softness. J. Chem. Phys. 135, 084513 (2011).CrossRefGoogle ScholarPubMed
Michele, C. De, Sciortino, F., and Coniglio, A.: Scaling in soft spheres: Fragility invariance on the repulsive potential softness. J. Phys.: Condens. Matter 16, L489 (2004).Google Scholar
Mattsson, J., Wyss, H.M., Fernandez-Nieves, A., Miyazaki, K., Hu, Z., Reichman, D.R., and Weitz, D.A.: Soft colloids make strong glasses. Nature 462, 83 (2009).CrossRefGoogle ScholarPubMed
Casalini, R.: The fragility of liquids and colloids and its relation to the softness of the potential. J. Chem. Phys. 137, 204904 (2012).CrossRefGoogle Scholar
Casalini, R. and Roland, C.M.: Thermodynamical scaling of the glass transition dynamics. Phys. Rev. E 69, 062501 (2004).CrossRefGoogle ScholarPubMed
Casalini, R. and Roland, C.M.: Why liquids are fragile. Phys. Rev. E 72, 031503 (2005).CrossRefGoogle ScholarPubMed
Voylov, D.N., Griffin, P.J., Mercado, B., Keum, J.K., Nakanishi, M., Novikov, V.N., and Sokolov, A.P.: Correlation between temperature variations of static and dynamic properties in glass-forming liquids. Phys. Rev. E 94, 060603(R) (2016).CrossRefGoogle ScholarPubMed
Dai, R. and Ashcraft, R.: Private communication.Google Scholar
Wei, S., Evenson, Z., Gallino, I., and Busch, R.: The impact of fragility on the calorimetric glass transition in bulk metallic glasses. Intermetal 55, 138 (2014).CrossRefGoogle Scholar
Evenson, Z., Gallino, I., and Busch, R.: The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J. Appl. Phys. 107, 123529 (2010).CrossRefGoogle Scholar
Lu, I-R., Wilde, G., Goerler, G.P., and Willnecker, R.: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999).CrossRefGoogle Scholar
Wilde, G., Goerler, G.P., Willnecker, R., and Fecht, H-J.: Calorimetric, thermomechanical, and rheological characterizations of bulk glass-forming Pd40Ni40P20 . J. Appl. Phys. 87, 1141 (2000).CrossRefGoogle Scholar
Fan, G.J., Lavernia, E.J., Wunderlich, R.K., and Fecht, H-J.: The relationship between kinetic and thermodynamic fragilities in metallic glassforming liquids. Philos. Mag. 84, 2471 (2004).CrossRefGoogle Scholar
Fontana, G.D. and Battezzati, L.: Thermodynamic and dynamic fragility in metallic glass-formers. Acta Mater. 61, 2260 (2013).CrossRefGoogle Scholar
Ding, J., Cheng, Y-Q., Sheng, H., and Ma, E.: Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. Phys. Rev. B 85, 060201(R) (2012).CrossRefGoogle Scholar
Ding, J., Cheng, Y-Q., and Ma, E.: Charge-transfer-enhanced prism-type local order in amorphous Mg65Cu25Y10: Short-to-medium-range structural evolution underlying liquid fragility and heat capacity. Acta Mater. 61, 3130 (2013).CrossRefGoogle Scholar
Krausser, J., Samwer, K.H., and Zaccone, A.: Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc. Natl. Acad. Sci. U. S. A. 112, 13762 (2015).CrossRefGoogle ScholarPubMed