Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T22:13:38.507Z Has data issue: false hasContentIssue false

Real-time x-ray scattering study of growth behavior of sputter-deposited LaNiO3 thin films on Si substrates

Published online by Cambridge University Press:  31 January 2011

Hsin-Yi Lee*
Affiliation:
Research Division, Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China
K. S. Liang
Affiliation:
Research Division, Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China
Chih-Hao Lee
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Tai-Bor Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
*
a)Address all correspondence to this author[email protected]
Get access

Abstract

Real-time x-ray reflectivity and diffraction measurements under in situ sputtering conditions were employed to study the growth behavior of LaNiO3 thin films on a Si substrate. Our results clearly show there is a transition layer of 60 Å, which grew in the first 6 min of deposition. The in situ x-ray-diffraction patterns indicated that this transition layer is amorphous. Subsequently, a polycrystalline overlayer grew as observed from the in situ x-ray reflectivity curves and diffraction patterns. Nucleation and growth took place on this transition layer with random orientation and then the polycrystalline columnar textures of (100) and (110) grew on the top of this random orientation layer. By comparing the integrated intensities of two Bragg peaks in the plane normal of x-ray diffraction, it was found that a crossover of the growth orientation from the ⟨110⟩ to the ⟨100ߩ direction occurred and the ability of (100) texturization enhanced with increasing film thickness beyond a certain critical value.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heartling, G.H., J. Vac. Sci. Technol. A 9, 414 (1991).Google Scholar
2.Sayer, M. and Sreenivas, K., Science 247, 105 (1990).CrossRefGoogle Scholar
3.Sheppard, L.M., Ceram. Bull. 71, 85 (1992).Google Scholar
4.Larsen, P.K., Cuppens, R., and Spierings, G.A.C.M, Ferroelectrics 128, 265 (1992).CrossRefGoogle Scholar
5.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingor, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.Google Scholar
6.Jiang, M.C. and Wu, T.B., J. Mater. Res. 9, 1879 (1994).CrossRefGoogle Scholar
7.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
8.Eom, C.B., Dover, R.B.V, Phillips, J.M., Fleming, R.M., Cava, R.J., Marshall, J.H., Werder, D.J., Chen, C.H., and Fork, D.K., in Ferroelectric Thin Films III, edited by Mayers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.Google Scholar
9.Vijat, D.P. and Desu, S.B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
10.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).Google Scholar
11.Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).CrossRefGoogle Scholar
12.Rajeex, K.P., Shivakuma, G.V., and Raychaudhmi, A.K., Solid State Commun. 79, 591 (1991).Google Scholar
13.Satyakahmi, K.M., Mallha, R.M., Ramanathan, K.V., Wu, X.D., Brainard, B., Gautier, D.C., Vasanthacharya, N.Y., and Hegde, M.S., Appl. Phys. Lett. 62, 1233 (1993).Google Scholar
14.Ichinose, H., Nagano, M., Katsuki, H., and Takag, H., J. Mater. Sci. 29, 5115 (1994).CrossRefGoogle Scholar
15.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).CrossRefGoogle Scholar
16.Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1975).CrossRefGoogle Scholar
17.Yang, C.C., Chen, M.S., Hong, T.J., Wu, C.M., Wu, J.M., and Wu, T.B., Appl. Phys. Lett. 66, 2643 (1995).CrossRefGoogle Scholar
18.Lee, H-Y., Wu, T-B., and Lee, J-F., J. Appl. Phys. 80, 2175 (1996).CrossRefGoogle Scholar
19.Shyu, M.J., Hong, T.J., and Wu, T.B., Jpn. J. Appl. Phys. 34, 3647 (1995).CrossRefGoogle Scholar
20.Shyu, M.J., Hong, T.J., and Wu, T.B., Mater. Lett. 23, 221 (1995).CrossRefGoogle Scholar
21.Chen, M.S., Wu, J.M., and Wu, T.B., Jpn. J. Appl. Phys. 34, 4870 (1995).CrossRefGoogle Scholar
22.Chen, M.S., Wu, T.B., and Wu, J.M., J. Appl. Phys. 68, 1430 (1996).Google Scholar
23.Wu, T.B., Hong, T.J., and Jiang, M.C., Mater. Chem. Phys. 36, 337 (1994).CrossRefGoogle Scholar
24.Lee, H-Y. and Wu, T-B., J. Mater. Res. 12, 3165 (1997).Google Scholar
25.Liu, Y.W., M.S. Thesis, National Tsing Hua University, Hsinchu, Taiwan, Republic of China, 1996 (in Chinese).Google Scholar
26.Cowley, R.A. and Ryan, T.W., J. Phys. D 20, 61 (1987).Google Scholar
27.Parratt, L.G., Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
28.Braslau, A., Pershan, P.S., Swislow, G., Ocko, B.M., and Als-Nielsen, J., Phys. Rev. A 38, 2457 (1988).Google Scholar
29.Heald, S.M., Chen, H., and Tranquada, J.M., Phys. Rev. B 38, 1016 (1988).CrossRefGoogle Scholar
30.Lucas, C.A., Hatton, P.D., Bates, S., Ryan, W., Miles, S., and Tanner, B.K., J. Appl. Phys. 63, 1936 (1988).CrossRefGoogle Scholar
31.Chen, H. and Heald, S.M., J. Appl. Phys. 66, 1793 (1989).CrossRefGoogle Scholar
32.Tidswell, I.M., Ocko, B.M., Pershan, P.S., Wasserman, S.R., Whitesides, G.M., and Axe, J.D., Phys. Rev. B 41, 1111 (1990).CrossRefGoogle Scholar
33.Bowen, D.K., Loxley, N., Tanner, B.K., Cooke, M.L., and Capano, M.A., in Advances in Surfaces and Thin-Film Diffraction, edited by Huang, T.C., Cohen, P.I., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 208, Pittsburgh, PA, 1991), p. 113.Google Scholar
34.Je, J.H., Noh, D.Y., Kim, H.K., and Liang, K.S., J. Appl. Phys. 81, 6126 (1997).CrossRefGoogle Scholar
35. JCPDS 33–710, H. Wustenberg, Hahn, Institut für Kristallografie, Technische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.Google Scholar
36.Oh, U.C. and Je, J.H., J. Appl. Phys. 74, 1692 (1993).CrossRefGoogle Scholar
37.Tseng, T.F., Yang, C.C., Liu, K.S., Wu, J.M., Wu, T.B., and Lin, I.N., Jpn. J. Appl. Phys. 35, 4743 (1996).CrossRefGoogle Scholar