Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:21:45.599Z Has data issue: false hasContentIssue false

Realization of enhanced room temperature ferromagnetism in pure and V-doped ZnO films on TOP functionalization

Published online by Cambridge University Press:  15 January 2014

G. Jayalakshmi
Affiliation:
Department of Physics, Thin film Laboratory, National Institute of Technology, Tiruchirappalli 620015, India
T. Balasubramanian*
Affiliation:
Department of Physics, Thin film Laboratory, National Institute of Technology, Tiruchirappalli 620015, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present study, we report an activation and enhancement of room temperature ferromagnetism in pure ZnO and V-doped ZnO (Zn0.95V0.05O and Zn0.90V0.10O) thin films by trioctylphosphine (TOP) functionalization. X-ray diffraction patterns show a slight decrease in the intensity of the diffraction peak on TOP functionalization. Atomic force micrographs of pure and V-doped ZnO films reveal no disorder in the film surface on TOP functionalization. The chemical bond formation of TOP on ZnO film surface was examined by x-ray photoelectron spectroscopy measurements. Photoluminescence measurements of TOP-functionalized ZnO films show enhancements of UV emission and quenching of visible emission. TOP-functionalized ZnO films reveal enhanced ferromagnetic behavior as evidenced from vibrating sample magnetometer measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).CrossRefGoogle ScholarPubMed
Gu, H., Jiang, Y., Xu, Y., and Yan, M.: Evidence of the defect-induced ferromagnetism in Na and Co codoped ZnO. Appl. Phys. Lett. 98, 012502 (2011).CrossRefGoogle Scholar
Pal, B. and Giri, P.K.: High temperature ferromagnetism and optical properties of Co doped ZnO nanoparticles. J. Appl. Phys. 108, 084322 (2010).CrossRefGoogle Scholar
Yoon, S.D., Chen, Y., Heiman, D., Yang, A., Sun, N., Victoria, C., and Harris, V.G.: Room temperature magnetism in semiconducting films of ZnO doped with ferric ions. J. Appl. Phys. 99, 08M109 (2006).CrossRefGoogle Scholar
Xu, Q., Schmidt, H., Hartmann, L., Hochmuth, H., Lorentz, M., Setzer, A., Esquinazi, P., Meinecke, C., and Grundmann, M.: Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. Appl. Phys. Lett. 91, 092503 (2007).CrossRefGoogle Scholar
Ramachandran, S., Tiwar, A., and Narayan, J.: Zn0.9Co0.1O-based diluted magnetic semiconducting thin films. Appl. Phys. Lett. 84, 5255 (2004).Google Scholar
Lee, H.J., Jeong, S.Y., Cho, C.R., and Park, C.H.: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020 (2002).CrossRefGoogle Scholar
Liu, H., Zhang, X., Li, L., Wang, Y.X., Gao, K.H., Li, Z.Q., Zheng, R.K., Ringer, S.P., Zhang, B., and Zhang, X.X.: Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 91, 072511 (2007).CrossRefGoogle Scholar
Schwartz, D.A., Kittilstved, K.R., and Gamelin, D.R.: Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 1395 (2004).CrossRefGoogle Scholar
Liu, C., Yun, F., Xiao, B., Cho, S.J., Moon, Y.T., Morkoc, H., Abouzaid, M., Ruterana, R., Yu, K.M., and Walukiewicz, W.: Structural analysis of ferromagnetic Mn-doped ZnO thin films deposited by radio frequency magnetron sputtering. J. Appl. Phys. 97, 126107 (2005).Google Scholar
Pan, H., Yi, J.B., Shen, L., Wu, R.Q., Yang, J.H., Lin, J.Y., Feng, Y.P., Deng, J., Van, L.H., and Yin, J.H.: Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. B 99, 127201 (2007).Google ScholarPubMed
Ferhat, M., Zaoui, A., and Ahuja, R.: Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94, 142502 (2009).CrossRefGoogle Scholar
Herng, T.S., Lau, S.P., Wei, C.S., Wang, L., Zhao, B.C., Tanemura, M., and Akaile, Y.: Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles. Appl. Phys. Lett. 95, 133103 (2009).CrossRefGoogle Scholar
Yu, C.F., Lin, T.J., Sun, S.J., and Chou, H.: Origin of ferromagnetism in nitrogen embedded ZnO: N thin films. J. Phys. D: Appl. Phys. 40, 6497 (2007).Google Scholar
Chawla, S., Jayanthi, K., and Kotnala, R.K.: Room-temperature ferromagnetism in Li-doped p-type luminescent ZnO nanorods. Phys. Rev. B, 79, 125204 (2009).CrossRefGoogle Scholar
Xing, G.Z., Yi, J.B., Tao, J.G., Liu, T., Wong, L.M., Zhang, Z., Li, G.P., Wang, S.J., Ding, J., Sum, T.C., Huan, C.H.A., and Wu, T.: Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521 (2008).CrossRefGoogle Scholar
Lao, C., Li, Y., Wong, C.P., and Wang, Z.L.: Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 1323 (2007).CrossRefGoogle ScholarPubMed
Spalenka, J.W., Gopalan, P., Katz, H.E., and Evans, P.G.: Electron mobility enhancement in ZnO thin films via surface modification by carboxylic acids. Appl. Phys. Lett. 102, 041602 (2013).CrossRefGoogle Scholar
Chen, W., Li, F., Chen, Y., Yuan, K., and Chen, L.: Enhancement of the ultraviolet emission of ZnO nanorods by terphenyl liquid-crystalline ligands modification. Appl. Surf. Sci. 257, 8788 (2011).CrossRefGoogle Scholar
Garcia, M.A., Merino, J.M., Pinel, E.F., Quesada, A., de la Venta, J., González, M.L.R., Castro, G.R., Crespo, P., Llopis, J., González-Calbet, J.M., and Hernando, A.: Magnetic properties of ZnO nanoparticles. Nano Lett. 7, 1489 (2009).CrossRefGoogle Scholar
Ortega, D., Chen, S.J., Suzuki, K., and Garitaonandia, J.S.: Room temperature spontaneous magnetization in calcined trioctylphosphine-ZnO nanoparticles. J. Appl. Phys. 111, 07C314 (2012).CrossRefGoogle Scholar
Quesada, A., Garcia, M.A., de la Venta, J., Fernandez Pinel, E., Merino, J.M., and Hernando, A.: Ferromagnetic behaviour in semiconductors: A new magnetism in search of spintronic materials. Eur. Phys. J. B 59, 457 (2007).CrossRefGoogle Scholar
Liu, J.F., Liu, E.Z., Wang, H., Su, N.H., Qi, J., and Jiang, J.Z.: Surface magnetism in amine-capped ZnO nanoparticles. Nanotechnology 20, 165702 (2009).CrossRefGoogle ScholarPubMed
Wang, Q., Sun, Q., and Jena, P.: Ligand induced ferromagnetism in ZnO Nanostructures. J. Chem. Phys. 129, 164714 (2008).CrossRefGoogle ScholarPubMed
Liu, E.Z. and Jiang, J.Z.: Magnetism of O-terminated ZnO(0001) with adsorbates. J. Phys. Chem. C 113, 16116 (2009).CrossRefGoogle Scholar
Rodriguez, J.A.: Orbital-band interactions and the reactivity of molecules on oxide surfaces: From explanations to predictions. Theor. Chem. Acc. 107, 117 (2002).Google Scholar
Henrich, V.A. and Cox, P.A.: The Surface Science of Metal Oxides (University Press, Cambridge, 1994).Google Scholar
Kung, H.H.: Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, Amsterdam, 1989).Google Scholar
Jayalakshmi, G., Gopalakrishnan, N., Panigrahi, B.K., and Balasubramanian, T.: Grain boundary defects induced room temperature ferromagnetism in V doped ZnO thin films. Cryst. Res. Technol. 46, 1257 (2011).CrossRefGoogle Scholar
Kwong, H.Y., Wong, M.H., Wong, Y.W., and Wong, K.H.: Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl. Surf. Sci. 253, 8841 (2007).CrossRefGoogle Scholar
Ong, W.L., Zhang, C., and Ho, G.W.: Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale 3, 4206 (2011).CrossRefGoogle ScholarPubMed
Cao, P., Zhao, D.X., Zhang, J.Y., Shen, D.Z., Lu, Y.M., Yao, B., Li, B.H., Bai, Y., and Fan, X.W.: Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films. Appl. Surf. Sci. 254, 2900 (2008).CrossRefGoogle Scholar
Coppa, B.J., Davis, R.F., and Nemanich, R.J.: Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000 $\bar 1$ ). Appl. Phys. Lett. 82, 400 (2003).CrossRefGoogle Scholar
Pugel, D.E., Vispute, R.D., Hullavarad, S.S., Venkatesan, T., and Varughese, B.: Oxygen-dependent phosphorus networking in ZnO thin films grown by low temperature rf sputtering. J. Appl. Phys. 101, 063538 (2007).CrossRefGoogle Scholar
Allenic, A., Guo, W., Chen, Y.B., Katz, M.B., Zhao, G.Y., Che, Y., Hu, Z.D., Liu, B., Zhang, S.B., and Pan, X.Q.: Amphoteric phosphorus doping for stable p-type ZnO. Adv. Mater. 19, 3333 (2007).CrossRefGoogle Scholar
Cong, G.W., Peng, W.Q., Wei, H.Y., Han, X.X., Wu, J.J., Liu, X.L., Zhu, Q.S., Wang, Z.G., Lu, J.G., Ye, Z.Z., Zhu, L.P., Qian, H.J., Su, R., Hong, C.H., Zhong, J., Ibrahim, K., and Hu, T.D.: Comparison of valence band X-ray photoelectron spectrum between Al?N-codoped and N-doped ZnO films. Appl. Phys. Lett. 88, 062110 (2006).CrossRefGoogle Scholar
Liu, G., Rodriguez, J.A., Chang, Z., Hrbek, J., and Pedan, C.H.F.: Adsorption and reaction of SO2 on model Ce1 - x Zr x O2(111) catalysts. J. Phys. Chem. B 108, 2931 (2004).CrossRefGoogle Scholar
Wu, Y.Z., Zeng, Y.J., He, H.P., Lin, J.M., Jiang, J., Ye, Z.Z., and Zhao, B.H.: Fabrication of phosphorus-doped ZnO quantum dots by metal organic chemical vapor deposition. Nanoelectronics Conference (INEC 2010), 3rd International Jan. 3–8, 2010.Google Scholar
Singh, J., Mukherjee, A., Sengupta, S.K., Im, J., Peterson, G.W., and Whitten, J.E.: Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence. Appl. Surf. Sci. 258, 5778 (2012).CrossRefGoogle Scholar
Jayalakshmi, G., Saravanan, K., and Balasubramanian, T.: Impact of thiol and amine functionalization on photoluminescence properties of ZnO films. J. Lumin. 140, 21 (2013).CrossRefGoogle Scholar
Lin, C.C., Chen, H.P., Liao, H.C., and Chen, S.Y.: Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005).CrossRefGoogle Scholar
Jung, D.R., Kim, J., and Park, B.: Surface-passivation effects on the photoluminescence enhancement in ZnS:Mn nanoparticles by ultraviolet irradiation with oxygen bubbling. Appl. Phys. Lett. 96, 211908 (2010).CrossRefGoogle Scholar