Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T09:55:11.976Z Has data issue: false hasContentIssue false

Reactions and reversible hydrogenation of single-walled carbon nanotube anions

Published online by Cambridge University Press:  28 September 2012

Chaiwat Engtrakul
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Calvin J. Curtis
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Jamie E. Ellis
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Lynn M. Gedvilas
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Jeffrey L. Blackburn
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Lin J. Simpson
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Kim M. Jones
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Philip A. Parilla
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Anne C. Dillon
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Michael J. Heben
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
Thomas Gennett*
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado80401
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single-walled carbon nanotube (SWNT) radical anions will react with tetrahydrofuran and generate ethylene, enolates, and a partially hydrogenated nanotube backbone. The experimental evidence suggests that there are sp3 C–H binding interactions. The total gravimetric content of hydrogen on a sample averages from 3.5% to 3.9% w/w, about four times the total amount observed for nanotubes hydrogenated via traditional Birch reduction reactions. Furthermore, the hydrogen desorbs at temperatures up to 400 °C less than those observed for the hydrogenated SWNTs formed after the Birch reduction. Finally, the first room temperature electron spin resonance spectrum of a nanotube radical ion is also reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pekker, S., Salvetat, J.-P., Jakab, E., Bonard, J.-M., and Forro, L.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B 105, 7938 (2001).CrossRefGoogle Scholar
Borondics, F., Bokor, M., Matus, P., Tompa, K., Pekker, S., and Jakab, E.: Reductive functionalization of carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct. 13, 375 (2005).CrossRefGoogle Scholar
Borondics, F., Jakab, E., and Pekker, S.: Functionalization of carbon nanotubes via dissolving metal reductions. J. Nanosci. Nanotechnol. 7, 1551 (2007).CrossRefGoogle ScholarPubMed
Penicaud, A., Poulin, P., Derre, A., Anglaret, E., and Petit, P.: Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8 (2004).CrossRefGoogle Scholar
Liang, F., Alemany, L.B., Beach, J.M., and Billups, W.E.: Structure analyses of dodecylated single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 13941 (2005).CrossRefGoogle ScholarPubMed
Liang, F., Beach, J.M., Kobashi, K., Sadana, A.K., Vega-Cantu, Y.I., Tour, J.M., and Billups, W.E.: In situ polymerization initiated by single-walled carbon nanotube salts. Chem. Mater. 18, 4764 (2006).CrossRefGoogle Scholar
Chattopadhyay, J., de Jesus Cortez, F., Chakraborty, S., Slater, N.K.H., and Billups, W.E.: Synthesis of water-soluble PEGylated single-walled carbon nanotubes. Chem. Mater. 18, 5864 (2006).CrossRefGoogle Scholar
Chattopadhyay, J., Sadana, A.K., Liang, F., Beach, J.M., Xiao, Y., Hauge, R.H., and Billups, W.E.: Carbon nanotube salts. Arylation of single-wall carbon nanotubes. Org. Lett. 7, 4067 (2005).CrossRefGoogle ScholarPubMed
Teprovich, J.A., Wellons, M.S., Lascola, R., Hwang, S.-J., Ward, P.A., Compton, R.N., and Zidan, R.: Synthesis and characterization of a lithium-doped fullerane (Lix-C60-Hy) for reversible hydrogen storage. Nano Lett. 12, 582 (2011).CrossRefGoogle Scholar
Bates, R.B., Kropskai, L.M., and Potter, D.E.: Cycloreversions of anions from tetrahydrofurans. A convenient synthesis of lithium enolates of aldehydes. J. Org. Chem. 37, 560 (1972).CrossRefGoogle Scholar
Carnahan, J. and Closson, W.D.: Reaction of naphthalene dianions with tetrahydrofuran and ethylene. J. Org. Chem. 37, 4469 (1972).CrossRefGoogle Scholar
Clayden, J. and Yasin, S.A.: Pathways for decomposition of THF by organolithiums: The role of HMPA. New J. Chem. 26, 191 (2002).CrossRefGoogle Scholar
Heben, M.J., Dillon, A.C., Gilbert, K.E.H., Parilla, P.A., Gennett, T., Alleman, J.L., Hornyak, G.L., and Jones, K.M.: Assessing the hydrogen adsorption capacity of single-wall carbon nanotube/metal composites. in Proceedings of the First International Workshop on Hydrogen in Materials and Vacuum Systems, edited by Myneni, G.R. and Chattopadhyay, S. (AIP Conf. Proc. 671, New York, NY, 2003) p. 77.Google Scholar
Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A., and Heben, M.J.: A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 11, 1354 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
Gennett, T., Dillon, A.C., Alleman, J.L., Jones, K.M., Hasoon, F.S., and Heben, M.J.: Formation of single-wall carbon nanotube superbundles. Chem. Mater. 12, 599 (2000).CrossRefGoogle Scholar
Stevenson, G.R., Wiedrlch, C.R., Zlgler, S.S., Echegoyen, L., and Maldonado, R.: The thermochemistry of solid naphthalene anion salts and their interaction with water. J. Phys. Chem. 87, 4995 (1983).CrossRefGoogle Scholar
Wang, H.C., Levin, C., and Szwarc, M.: Comment on the communication: Production of hydrogen from interaction of an anion radical and water. J. Am. Chem. Soc. 100, 3969 (1978).CrossRefGoogle Scholar
Curtis, C.J., Gennett, T., Engtrakul, C., O’Neill, K., Ellis, J.E., and Heben, M.J.: Mechanism of hydrogen storage on reduced carbon single-walled nanotubes. in The Hydrogen Economy, edited by Dillon, A., Moen, C., Choudhury, B., and Keller, J. (Mater. Res. Soc. Symp. Proc. 1098, Warrendale, PA, 2008). 1098-HH04-04.Google Scholar
Bauschlicher, C.W.: High coverages of hydrogen on a (10,0) carbon nanotube. Nano Lett. 1, 223 (2001).CrossRefGoogle Scholar
Park, K.A., Seo, K., and Lee, Y.H.: Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B 109, 8967 (2005).CrossRefGoogle ScholarPubMed
Martino, A.D., Egger, R., Hallberg, K., and Balseiro, C.A.: Spin-orbit coupling and electron spin resonance theory for carbon nanotubes. Phys. Rev. Lett. 88, 206402 (2002).CrossRefGoogle ScholarPubMed
Salvetat, J.P., Fehér, T., L’Huillier, C., Beuneu, F., and Forró, L.: Anomalous electron spin resonance behavior of single-walled carbon nanotubes. Phys. Rev. B 72, 075440 (2005).CrossRefGoogle Scholar
Rosokha, S.V. and Kochi, J.K.: The question of aromaticity in open-shell cations and anions as ion-radical offsprings of polycyclic aromatic and antiaromatic hydrocarbons. J. Org. Chem. 71, 9357 (2006).CrossRefGoogle ScholarPubMed
Dillon, A.C., Yudasaka, M., and Dresselhaus, M.S.: Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4, 691 (2004).CrossRefGoogle ScholarPubMed
Claye, A., Rahman, S., Fischer, J.E., Sirenko, A., Sumanasekera, G.U., and Eklund, P.C.: In situ Raman scattering studies of alkali-doped single wall carbon nanotubes. Chem. Phys. Lett. 333, 16 (2001).CrossRefGoogle Scholar
Gupta, S., Hughes, M., Windle, A.H., and Robertson, J.: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95, 2038 (2004).CrossRefGoogle Scholar
Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., and Smalley, R.E.: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257 (1997).CrossRefGoogle Scholar
Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., and Dai, H.: Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 6026 (2006).CrossRefGoogle ScholarPubMed
Dillon, A.C., Parilla, P.A., Alleman, J.L., Gennett, T., Jones, K.M., and Heben, M.J.: Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401, 522 (2005).CrossRefGoogle Scholar
Khare, B.N., Meyyappan, M., Cassell, A.M., Nguyen, C.V., and Han, J.: Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2, 73 (2002).CrossRefGoogle Scholar
Khare, B.N., Meyyappan, M., Kralj, J., Wilhite, P., Sisay, M., Imanaka, H., Koehne, J., and Bauschlicher, C.W.: A glow-discharge approach for functionalization of carbon nanotubes. Appl. Phys. Lett. 81, 5237 (2002).CrossRefGoogle Scholar
Miller, G.P., Kintigh, J., Kim, E., Weck, P.F., Berber, S., and Tomanek, D.: Hydrogenation of single-wall carbon nanotubes using polyamine reagents: Combined experimental and theoretical study. J. Am. Chem. Soc. 130, 2296 (2008).CrossRefGoogle ScholarPubMed
König, E., Musso, H., and Záhorszky, U.-I.: Phenyldiimine in the reduction of diazonium salts by sodium tetrahydridoborate. Angew. Chem. Int. Ed. 11, 45 (1972).Google Scholar
34.Edmana, L., Herold, A., Jacobsson, P., Lelaurain, M., McRaeb, E., and Sundqvista, B.: Sodium–sodium halide co-intercalated graphite: Chemistry, structure and electrical transport. J. Phys. Chem. Solids 60, 475 (1999).CrossRefGoogle Scholar
Metrot, A., Guerard, D., Billaud, D., and Herold, A.: New results about the sodium-graphite system. Synth. Met. 1, 363 (1980).CrossRefGoogle Scholar
Pruvost, S., Herold, C., Herold, A., and Lagrange, P.: Co-intercalation into graphite of lithium and sodium with an alkaline earth metal. Carbon 42, 1825 (2004).CrossRefGoogle Scholar