Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:10:18.606Z Has data issue: false hasContentIssue false

Rate-change instrumented indentation for measuring strain rate sensitivity

Published online by Cambridge University Press:  31 January 2011

D. Pan
Affiliation:
World Premier International Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; and Institute for International Advanced Interdisciplinary Research, Tohoku University, Sendai 980-8577, Japan
M.W. Chen*
Affiliation:
World Premier International Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan; and Institute for International Advanced Interdisciplinary Research, Tohoku University, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A rate-change instrumented indentation method is introduced to experimentally characterize the strain rate sensitivity of high strength materials, such as metallic glasses and nanocrystalline metals, which generally possess low rate sensitivity at room temperature. This technique has been validated herein, via self-consistency between rate jump and rate drop measurements, as a viable way to characterize rate dependent deformation behavior and thereby the underlying micromechanisms of plastic flow.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hutchinson, J.W. and Neale, K.W.: Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 25, 839 (1977).CrossRefGoogle Scholar
2Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
3Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
4Johnson, W.L. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
5Chen, M.W.: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).CrossRefGoogle Scholar
6Pan, D., Inoue, A., Sakurai, T., and Chen, M.W.: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Nat. Acad. Sci. U.S.A. 105, 14769 (2008).CrossRefGoogle ScholarPubMed
7Dieter, G.E.: Mechanical Metallurgy, 2nd ed. (McGraw-Hill Series in Materials Science and Engineering, New York, 1976), p. 351.Google Scholar
8Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998).CrossRefGoogle Scholar
9Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
10Pan, D., Kuwano, S., Fujita, T., and Chen, M.W.: Ultra-large room-temperature compressive plasticity of a nanocrystalline metal. Nano Lett. 7, 2108 (2007).CrossRefGoogle Scholar
11Dao, M., Chollacoop, N., Vliet, K.J. Van, Venkatesh, T.A., and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
12Cheng, Y.T. and Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).CrossRefGoogle Scholar
13Liu, F.X., Gao, Y.F., and Liaw, P.K.: Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation. Metall. Mater. Trans. A 39, 1862 (2008).CrossRefGoogle Scholar
14Pan, D., Nieh, T.G., and Chen, M.W.: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).CrossRefGoogle Scholar
15Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
16Fischer-Cripps, A.C.: Nanoindentation, Mechanical Engineering Series (Springer, Berlin, 2002).Google Scholar
17Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nano-crystalline nickel. Acta Mater. 51, 5159 (2003).CrossRefGoogle Scholar
18Torre, F. Dalla, Swygenhoven, H. Van, and Victoria, M.: Nano-crystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).CrossRefGoogle Scholar
19Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).CrossRefGoogle Scholar
20Yang, B., Riester, L., and Nieh, T.G.: Strain hardening and recovery in a bulk metallic glass under nanoindentation. Scr. Mater. 54, 1277 (2006).CrossRefGoogle Scholar
21Chen, M.W., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
22Bei, H., Lu, Z.P., and George, E.P.: Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Phys. Rev. Lett. 93, 125504 (2004).CrossRefGoogle ScholarPubMed
23Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).CrossRefGoogle Scholar
24Greer, A.L., Casterllero, A., Madge, S.V., Walker, I.T., and Wilde, J.R.: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng., A 375, 1182 (2004).CrossRefGoogle Scholar
25Wang, K., Pan, D., Chen, M.W., Zhang, W., Wang, X.M., and Inoue, A.: Measuring elastic energy density of bulk metallic glasses by nanoindentation. Mater. Trans. 47, 1981 (2006).CrossRefGoogle Scholar
26Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium. Acta Mater. 56, 884 (2008).CrossRefGoogle Scholar
27Alkorta, J., Martinez-Esnaola, J.M., and Sevillano, J.G.: On the elastic effects in power-law indentation creep with sharp conical indenters. J. Mater. Res. 23, 182 (2008).CrossRefGoogle Scholar
28Elmustafa, A.A., Kose, S., and Stone, D.S.: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22, 926 (2007).CrossRefGoogle Scholar
29Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
30Johnson, K.L.: Contact Mechanics (Cambridge University Press, New York 1989).Google Scholar
31Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).CrossRefGoogle Scholar