Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T22:58:02.831Z Has data issue: false hasContentIssue false

Rare-earth pyrosilicate solid-solution environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass

Published online by Cambridge University Press:  11 June 2020

Laura R. Turcer
Affiliation:
School of Engineering Brown University, Providence, Rhode Island02912, USA
Nitin P. Padture*
Affiliation:
School of Engineering Brown University, Providence, Rhode Island02912, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-temperature (1500 °C) interactions of promising environmental-barrier coating (EBC) ceramics in the rare-earth (RE) pyrosilicate system, Yb(2-x)YxSi2O7 (x = 0, 0.2, 1, or 2), with three different calcia–magnesia–aluminosiliate (CMAS) glass compositions, are explored. Only the Ca/Si ratio is varied in the CMAS: 0.76, 0.44, or 0.10. Interaction between the highest Ca/Si CMAS and the EBC ceramic with the lowest x (=0, Yb2Si2O7) promotes no reaction but the formation of “blister” cracks. In contrast, the highest x (=2, Y2Si2O7) promotes the formation of an apatite reaction product, but no “blister” cracks. Observationally, it is found that a decrease in the CMAS Ca/Si ratio (0.76–0.10) and a decrease in Y-content decreases the propensity for reaction crystallization (apatite formation) and “blister” cracks. These results are rationalized based on the relative affinities between Ca2+ in the CMAS and Y3+ or Yb3+ in the EBC ceramics, suggesting a way to tune the CMAS interactions in RE pyrosilicate solid solutions.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280284 (2002).10.1126/science.1068609CrossRefGoogle ScholarPubMed
Darolia, R.: Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. Int. Mater. Rev. 58, 315348 (2013).10.1179/1743280413Y.0000000019CrossRefGoogle Scholar
Clarke, D.R., Oechsner, M., and Padture, N.P.: Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 37, 891898 (2012).CrossRefGoogle Scholar
Padture, N.P.: Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804809 (2016).CrossRefGoogle ScholarPubMed
Perepezko, J.H.: The hotter the engine, the better. Science 326, 10681069 (2009).CrossRefGoogle Scholar
Bansal, N.P. and Lamon, J.: Ceramic Matrix Composites: Materials, Modelling, and Technology (John Wiley & Sons, Hoboken, NJ, USA, 2014).Google Scholar
Zok, F.W.: Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency. Am. Ceram. Soc. Bull. 95, 2228 (2016).Google Scholar
Opila, E.J., Smialek, J.L., Robinson, R.C., Fox, D.S., and Jacobson, N.S.: SiC recession caused by SiO2 scale volatility under combustion conditions: II, thermodynamics and gaseous-diffusion model. J. Am. Ceram. Soc. 82, 18261834 (1999).10.1111/j.1151-2916.1999.tb02005.xCrossRefGoogle Scholar
Meschter, P.J., Opila, E.J., and Jacobson, N.S.: Water vapor–mediated volatilization of high-temperature materials. Annu. Rev. Mater. Res. 43, 559588 (2013).10.1146/annurev-matsci-071312-121636CrossRefGoogle Scholar
Zhu, D.: Advanced environmental barrier coatings. In Engineered Ceramics: Current Status and Future Prospects, Ohji, T. and Singh, M., eds. (John Wiley & Sons, Hoboken, NJ, USA, 2016), pp. 187202.Google Scholar
Lee, K.N.: Current status of environmental barrier coatings for Si-Based ceramics. Surf. Coat. Technol. 133–134, 17 (2000).Google Scholar
Lee, K.N., Fox, D.S., and Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 17051715 (2005).10.1016/j.jeurceramsoc.2004.12.013CrossRefGoogle Scholar
Bakan, E., Mack, D.E., Mauer, G., Vaßen, R., Lamon, J., and Padture, N.P.: High-temperature materials for power generation in gas turbines. In Advanced Ceramics for Energy Conversion and Storage, Guillon, O., ed. (Elsevier, Cambridge, MA, 2020), pp. 362.CrossRefGoogle Scholar
Levi, C.G., Hutchinson, J.W., Vidal-Sétif, M.-H., and Johnson, C.A.: Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 37, 932941 (2012).CrossRefGoogle Scholar
Poerschke, D.L., Jackson, R.W., and Levi, C.G.: Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu. Rev. Mater. Res. 47, 297330 (2017).10.1146/annurev-matsci-010917-105000CrossRefGoogle Scholar
Krause, A.R., Senturk, B.S., Garces, H.F., Dwivedi, G., Ortiz, A.L., Sampath, S., and Padture, N.P.: 2ZrO2⋅Y2O3 Thermal barrier coatings resistant to degradation by molten CMAS: Part I, Optical basicity considerations and processing. J. Am. Ceram. Soc. 97, 39433949 (2014).CrossRefGoogle Scholar
Liu, J., Zhang, L., Liu, Q., Cheng, L., and Wang, Y.: Calcium–magnesium–aluminosilicate corrosion behaviors of rare-earth disilicates at 1400°C. J. Eur. Ceram. Soc. 33, 34193428 (2013).10.1016/j.jeurceramsoc.2013.05.030CrossRefGoogle Scholar
Ahlborg, N.L. and Zhu, D.: Calcium–magnesium–aluminosilicate (CMAS) reactions and degradation mechanisms of advanced environmental barrier coatings. Surf. Coat. Technol. 237, 7987 (2013).CrossRefGoogle Scholar
Stokes, J.L., Harder, B.J., Wiesner, V.L., and Wolfe, D.E.: High-temperature thermochemical interactions of molten silicates with Yb2Si2O7 and Y2Si2O7 environmental barrier coating materials. J. Eur. Ceram. Soc. 39, 50595067 (2019).CrossRefGoogle Scholar
Summers, W.D., Poerschke, D.L., Park, D., Shaw, J.H., Zok, F.W., and Levi, C.G.: Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Mater. 160, 3446 (2018).CrossRefGoogle Scholar
Wiesner, V.L., Harder, B.J., and Bansal, N.P.: High-temperature interactions of desert sand CMAS glass with yttrium disilicate environmental barrier coating material. Ceram. Int. 44, 2273822743 (2018).CrossRefGoogle Scholar
Stolzenburg, F., Kenesei, P., Almer, J., Lee, K.N., Johnson, M.T., and Faber, K.T.: The influence of calcium–magnesium–aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Mater. 105, 189198 (2016).CrossRefGoogle Scholar
Stolzenburg, F., Johnson, M.T., Lee, K.N., Jacobson, N.S., and Faber, K.T.: The interaction of calcium–magnesium–aluminosilicate with ytterbium silicate environmental barrier materials. Surf. Coat. Technol. 284, 4450 (2015).CrossRefGoogle Scholar
Zhao, H., Richards, B.T., Levi, C.G., and Wadley, H.N.G.: Molten silicate reactions with plasma sprayed ytterbium silicate coatings. Surf. Coat. Technol. 288, 151162 (2016).CrossRefGoogle Scholar
Poerschke, D.L., Hass, D.D., Eustis, S., Seward, G.G.E., Van Sluytman, J.S., and Levi, C.G.: Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites. J. Am. Ceram. Soc. 98, 278286 (2015).CrossRefGoogle Scholar
Costa, G., Harder, B.J., Wiesner, V.L., Zhu, D., Bansal, N., Lee, K.N., Jacobson, N.S., Kapush, D., Ushakov, S.V., and Navrotsky, A.: Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents. J. Am. Ceram. Soc. 102, 29482964 (2019).Google Scholar
Tian, Z., Ren, X., Lei, Y., Zheng, L., Geng, W., Zhang, J., and Wang, J.: Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. J. Eur. Ceram. Soc. 39, 42454254 (2019).CrossRefGoogle Scholar
Turcer, L.R., Krause, A.R., Garces, H.F., Zhang, L., and Padture, N.P.: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7. J. Eur. Ceram. Soc. 38, 39143924 (2018).CrossRefGoogle Scholar
Turcer, L.R., Krause, A.R., Garces, H.F., Zhang, L., and Padture, N.P.: Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7. J. Eur. Ceram. Soc. 38, 39053913 (2018).10.1016/j.jeurceramsoc.2018.03.021CrossRefGoogle Scholar
Turcer, L.R. and Padture, N.P.: Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics. Scr. Mater. 154, 111117 (2018).CrossRefGoogle Scholar
Felsche, J.: The crystal chemistry of the rare-earth silicates. In Rare Earths, (Springer Berlin, Heidelberg, 1973); pp. 99197.CrossRefGoogle Scholar
Fernández-Carrión, A.J., Alba, M.D., Escudero, A., and Becerro, A.I.: Solid solubility of Yb2Si2O7 in β-, γ- and δ-Y2Si2O7. J. Solid State Chem. 184, 18821889 (2011).10.1016/j.jssc.2011.05.034CrossRefGoogle Scholar
Maier, N., Rixecker, G., and Nickel, K.G.: Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J. Solid State Chem. 179, 16301635 (2006).10.1016/j.jssc.2006.02.019CrossRefGoogle Scholar
Drexler, J.M., Ortiz, A.L., and Padture, N.P.: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 60, 54375447 (2012).10.1016/j.actamat.2012.06.053CrossRefGoogle Scholar
Smialek, J.L., Archer, F.A., and Garlick, R.G.: Turbine airfoil degradation in the Persian Gulf War. JOM 46, 3941 (1994).CrossRefGoogle Scholar
Drexler, J.M., Gledhill, A.D., Shinoda, K., Vasiliev, A.L., Reddy, K.M., Sampath, S., and Padture, N.P.: Jet engine coatings for resisting volcanic ash damage. Adv. Mater. 23, 24192424 (2011).10.1002/adma.201004783CrossRefGoogle ScholarPubMed
Quintas, A., Caurant, D., Majérus, O., and Charpentier, T.: Effect of changing the rare earth cation type on the structure and crystallization behavior of an aluminoborosilicate glass. In XXIst International Congress on Glass (ICG 2007), (Strasbourg, France, 2007).Google Scholar
Stokes, J.L., Harder, B.J., Wiesner, V.L., and Wolfe, D.E.: Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. J. Am. Ceram. Soc. 103, 622634 (2020).10.1111/jace.16694CrossRefGoogle Scholar
Costa, G., Harder, B.J., Bansal, N.P., Kowalski, B.A., and Stokes, J.L.: Thermochemistry of calcium rare-earth silicate oxyapatites. J. Am. Ceram. Soc. 103, 14461453 (2020).CrossRefGoogle Scholar
Aygun, A., Vasiliev, A.L., Padture, N.P., and Ma, X.: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55, 67346745 (2007).CrossRefGoogle Scholar
Sun, Z., Zhou, Y., and Li, M.: Low-temperature synthesis and sintering of γ-Y2Si2O7. J. Mater. Res. 21, 14431450 (2006).10.1557/jmr.2006.0173CrossRefGoogle Scholar
Drexler, J.M., Shinoda, K., Ortiz, A.L., Li, D., Vasiliev, A.L., Gledhill, A.D., Sampath, S., and Padture, N.P.: Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 58, 68356844 (2010).CrossRefGoogle Scholar