Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:08:26.489Z Has data issue: false hasContentIssue false

Rapidly quenched Bi-containing high Tc superconducting oxide compositions

Published online by Cambridge University Press:  31 January 2011

K. Nassau
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
A. E. Miller
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
E. M. Gyorgy
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
T. Siegrist
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Twin roller quenching from the melt at cooling rates of ∼107 K s−1 was used on several Bi-containing high Tc compositions. Pure glass was obtained in most compositions and the route of crystallization was studied by differential thermal and thermogravimetric analysis, x-ray diffraction, and magnetic measurements. Heating of the glasses produced poorly crystallized short-range-order-only as determined by x-ray diffraction, despite passing through several exotherms, some of which were very strong. This anomalous behavior deserves further investigation. On heating to higher temperatures the expected double-copper-oxide-layer high Tc phase formed sluggishly via intermediate CuBi2O4 and/or single-copper-oxide-layer Bi2(Sr, Cu)2CuO4 phases. Considerable oxygen absorption of about 0.5 O per Cu occurs during these steps, peaking at about 680 °C; some of this oxygen is lost again by the time the high Tc phase forms just below the melting point.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chen, H. S. and Miller, C. E.Rev. Sci. Instrum. 41, 12371238 (1970).CrossRefGoogle Scholar
2Nassau, K.Wang, C. A. and Grasso, M.J. Am. Ceram. Soc. 62, 503510 (1979).CrossRefGoogle Scholar
3Nassau, K.Wang, C. A. and Grasso, M.J. Am. Ceram. Soc. 62, 7479 (1979).CrossRefGoogle Scholar
4Nassau, K.Shiever, J. W.Joy, D. C. and Glass, A. M.J. Cryst. Growth 42, 574578 (1977).CrossRefGoogle Scholar
5Glass, A.M.Nassau, K. and Shiever, J.W.J. Appl. Phys. 48, 52135216 (1978).CrossRefGoogle Scholar
6Ihara, H.Sugise, R.Hirabayashi, M.Terada, N.Jo, M.Hayashi, K.Negishi, A.Tokumoto, M.Kimura, Y. and Shimomura, T.Nature 334, 510511 (1988).CrossRefGoogle Scholar
7Haldar, P.Chen, K.Maheswaran, B.Roig-Janicki, A., Jaggi, N. K.Markiewicz, R. S. and Giessen, B.C.Science 241, 11981200 (1988).CrossRefGoogle Scholar
8Kim, N.K.Drozdyk, L.Payne, D.A.Friedmann, T. A.Wright, W.H. and Ginsberg, D.M.Mater. Lett. 5, 387390 (1987).CrossRefGoogle Scholar
9McKittrick, J.Chen, L.Q.Sasayama, S.McHenry, M. E.Kalonji, G. and O'Handley, R. C., Advanced Ceram. Mats. 2, 353363 (1987).Google Scholar
10McHenry, M.E.McKittrick, S.Sasayama, S.Kwapong, V.O'Handley, R.C., and Kanji, G.Phys. Rev. B37, 623626 (1988).CrossRefGoogle Scholar
11Li, Y. and Hadipanayis, G.C.Appl. Phys. Lett. 53, 412413 (1988).CrossRefGoogle Scholar
12Takahashi, K.Shimomura, S.Nagasawa, A.Ohta, M. and Kakegawa, K., Jpn. J. Appl. Phys. 26, L19911993 (1987).CrossRefGoogle Scholar
13Matzutaki, K.Inoue, A.Kimura, H.Shimizu, K. and Masumoto, T.Jpn. J. Appl. Phys. 26, L13841387 (1987).Google Scholar
14Hinks, D.G.Soderholm, L.Capone, D.W. II, Dabrowski, B.Mitchell, A.W. and Shi, D.Appl. Phys. Lett. 53, 423425 (1988).CrossRefGoogle Scholar
15Minami, T.Akamatsu, Y.Tatsumisago, M.Tohge, N. and Kowada, Y.Jpn. J. Appl. Phys. 27, L777778 (1988).CrossRefGoogle Scholar
16Shimomura, S.Takahashi, K.Ohta, M.Watanabe, A.Seido, M. and Hosono, F.Jpn. J. Appl. Phys. 27, L18901891 (1988).CrossRefGoogle Scholar
17Yoshimura, M.Sung, T.H.Nakagawa, A. and Nakamura, T.Jpn. J. Appl. Phys. 27, L18771879 (1988).CrossRefGoogle Scholar
18Komatsu, T.Sato, R.Imai, K.Matusita, K. and Yamashita, T.Jpn. J. Appl. Phys. 27, L550552 (1988).CrossRefGoogle Scholar
19Skumryev, V.Puzniak, R.Karpe, W.Han, Z.H.Pont, M.Medelius, H., Chen, D.X. and Rao, K. V.Physica C152, 315320 (1988).CrossRefGoogle Scholar
20Garzon, F. H.Beery, J.G. and Raistrick, I.D.Appl. Phys. Lett. 53, 805807 (1988).CrossRefGoogle Scholar
21Nasu, H.Ibara, Y.Makida, S.Imura, T. and Osaka, Y.J. Non-Cryst. Solids 105, 185187 (1988).CrossRefGoogle Scholar
22Zheng, H. and Mackenzie, J.D.Phys. Rev. B38, 71667168 (1988).CrossRefGoogle Scholar
23Kanai, T.Kumagai, T.Soeta, A.Suzuki, T.Aihara, K.Kamo, T. and Matsuda, S.Jpn. J. Appl. Phys. 27, L14351438 (1988).CrossRefGoogle Scholar
24Grudgel, T. J.Zanotto, E. D.Smith, G. L.Dale, G.Subramoney, S.Uhlmann, E. V.Denesuk, M.Cronin, J.Dutta, B.Samuels, B.Rajendran, G.Fabes, B. and Uhlmann, D. R. Preprint, Proc. 90th Meeting Am Ceram. Soc. (1988).Google Scholar
25Zanotto, E. D.Cronin, J. P.Dutta, B.Samuels, B.Subramoney, S.Smith, G. L.Dale, G.Grudgel, T. J.Rajendran, G.Uhlmann, E. V.Denesuk, M.Fabes, B.D. and Uhlmann, D.R. Preprint, Proc. 90th Meeting Am. Ceram. Soc. (1988).Google Scholar
26Tarascon, J.M.McKinnon, W. R.Barboux, P.Hwang, D.M.Bagley, B.G.Green, L. H.Hull, G.LePage, Y.Stoffel, N. and Giroud, M. Preprint, submitted to Phys. Rev. B (1988).Google Scholar
27Matsushita, K. and Komatsu, T. Nikkan Kogyo Shimbum, 16 March 1988, p. 5.Google Scholar
28Schnering, H. G. von, Waltz, L.Schwarz, M.Becker, W.Hartweg, M.Popp, T.Hettich, B.Miiller, P. and Kampf, G.Angew. Chem. Int. Ed. Engl. 27, 574576 (1988).CrossRefGoogle Scholar
29Sunshine, S.A.Siegrist, T.Schneemeyer, L. F.Murphy, D.W.Cava, R. J.Batlogg, B.Dover, R. B. van, Fleming, R. M.Glarum, S.H.Nakahara, S.Farrow, R.Krajewski, J. J.Zahurak, S.M.Waszczak, J. V.Marshall, T. H.Marsh, P.Rupp, L. W. Jr. , and Pech, W. F.Phys. Rev. B38, 893896 (1988).CrossRefGoogle Scholar
30Baivin, J.C.Trehoux, J. and Thomas, D.Bull. Soc. fr. Mineral Crys-tallogr. 99, 193196 (1976).Google Scholar
31Siegrist, T.Schneemeyer, L. F.Sunshine, S.A.Waszczak, J.V. and Roth, R. S.Mater. Res. Bull (in press).Google Scholar
32Mizuno, M.Endo, H.Tsuchiya, J.Kijima, N.Sumiyama, A. and Oguri, Y.Jpn. J. Appl. Phys. 27, L12251227 (1988).CrossRefGoogle Scholar
33Mikalsen, D.J.Roy, R.A.Yee, D.S.Shivashankar, S.A. and Cuomo, J.J.Mater, J.Res. 3, 613618 (1988).Google Scholar
34Gyorgy, E. M.Nassau, K.Eibschutz, M.Waszczak, J. V.Wang, C. A. and Shelton, J.C.J. Appl. Phys. 50, 28832886 (1979).CrossRefGoogle Scholar
35Cullity, B. D.Elements of X-ray Diffraction (–Addison-Wesley, Reading, PA, 1978), p. 284.Google Scholar
36Ostwald, quoted in Volmer, M.Kinetics of Phase Formation (I. Steinkopff Dresden, Federal Republic of Germany, 1968), p. 7.Google Scholar
37Nassau, K.Miller, A.E. and Gyorgy, E.M.Mater. Res. Bull (in press).Google Scholar