Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T10:21:08.088Z Has data issue: false hasContentIssue false

Rapid solidification by unstable combustion synthesis

Published online by Cambridge University Press:  03 March 2011

H.P. Li
Affiliation:
Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
J.A. Sekhar
Affiliation:
Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
Get access

Abstract

During combustion/micropyretic synthesis, conditions that give rise to rapid solidification and rapidly solidified microstructures may be encountered. In this article, many such conditions are identified for the first time in a Ni–Al system. In addition, the banded structures and aligned dendrites that are encountered in this system are also examined. The various techniques of rapid solidification that may be initiated with combustion synthesis are examined and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klement, W. Jr., Willens, R. H., and Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
2Sekhar, J. A., J. Cryst. Growth 109, 113 (1991).Google Scholar
3Jones, H., Rapid Solidification of Metals and Alloys (The Institution of Metallurgists, London, 1982).Google Scholar
4Kurz, W. and Fisher, D. J., Fundamentals of Solidification (Trans Tech Publications, 1989).Google Scholar
5Laridjani, M., Ramachandrarao, P., and Cahn, R. W., J. Mater. Sci. 7, 627 (1972).CrossRefGoogle Scholar
6Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35, 444 (1964).Google Scholar
7Coriell, S. R. and Sekerka, R. F., in Rapid Solidification Processing: Principles and Techniques, edited by Mehrabian, R., Kear, B. H., and Cohen, H. (Claitors Publishing Division, Baton Rouge, LA, 1980), p. 35.Google Scholar
8Trivedi, R., Sekhar, J. A., and Seetharaman, V., Metall. Trans. A 20A, 769 (1989).Google Scholar
9Hirth, J. P., Metall. Trans. A 9A, 401 (1978).Google Scholar
10Sekhar, J. A. and Chande, T., Trans. I.I.M. 37 (1), 67 (1984).Google Scholar
11Levi, C. G. and Mehrabian, R., Metall. Trans. A 13A, 13 (1982).Google Scholar
12Sekhar, J. A. and Rajasekharan, T., Nature 320, 153 (1986).CrossRefGoogle Scholar
13Sekhar, J. A. and Risbud, S. H., Mater. Res. Bull. XVI, 681 (1981).Google Scholar
14Rama Rao, K. V. and Sekhar, J. A., Metall. Trans. A 18A, 354 (1987).Google Scholar
15Li, H. P., Bhaduri, S., and Sekhar, J. A., Metall. Trans. A 23A, 251 (1992).CrossRefGoogle Scholar
16Merzhanov, A. G. and Khaikin, B. I., Prog. Energy Combust. Sci. 14, 1 (1988).Google Scholar
17Holt, J. B. and Dunmead, S. D., Annu. Rev. Mater. Sci. 21, 305 (1991).CrossRefGoogle Scholar
18Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).Google Scholar
19Munir, Z. A., Am. Ceram. Bull. 34 (2), 342 (1988).Google Scholar
20Feng, H. J., Moore, J. J., and Wirth, D. G., Metall. Trans. A 23A, 2373 (1992).Google Scholar
21Klimchuk, E. G., Gazaryan, K. G., and Merzhanov, A. G., Combust. Explos. Shock Waves 27, 597 (1991).Google Scholar
22Rice, R. W., J. Mater. Sci. 26, 6533 (1991).Google Scholar
23Bose, A., Rabin, B. H., and German, R. M., Powder Metall. Int. 20 (3), 25 (1988).Google Scholar
24Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24A, 617 (1993).Google Scholar
25Li, H. P. and Sekhar, J. A., Mater. Sci. Eng. A 160 (2), 221 (1993).CrossRefGoogle Scholar
26Li, H. P. and Sekhar, J. A., in Advanced Synthesis of Engineered Structural Materials, edited by Moore, J. J., Lavernia, E. J., and Froes, F.H. (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 25.Google Scholar
27Maksimov, Y. M., Pak, A. T., Lavrenchuk, G. B., Naiborodenko, Y. S., and Merzhanov, A. G., Combust. Explos. Shock Wave 15 (4), 415 (1979).CrossRefGoogle Scholar
28Yi, H. C. and Moore, J. J., J. Mater. Sci. Lett. 8, 1182 (1989); J. Mater. Sci. 24, 3449 (1989); 24, 3456 (1989); J. Mater. Sci. 25, 1159 (1990); J. Metals 42 (8), 31 (1990).Google Scholar
29Sekhar, J. A., Bhattacharya, A. K., and Li, H. P., U. S. Patent 5110688 (1992).Google Scholar
30Lakshmikantha, M. G., Bhattacharya, A., and Sekhar, J. A., Metall. Trans. A 23A, 23 (1992).CrossRefGoogle Scholar
31Shkadinskii, K. G., Khaikin, B. I., and Merzhanov, A. G., Combust. Explos. Shock Waves 7 (1), 15 (1971).Google Scholar
32Naiborodenko, Y. S. and Itin, V. I., Combust. Explos. Shock Waves 11 (3), 293 (1975).CrossRefGoogle Scholar
33Shkiro, V. M. and Nersisyan, G. A., Combust. Explos. Shock Waves 14 (1), 121 (1978).CrossRefGoogle Scholar
34Matkowsky, B. J. and Sivashinsky, G. I., SIAM J. Appl. Math. 35, 465 (1978).CrossRefGoogle Scholar
35Margolis, S. B., SIAM J. Appl. Math. 43, 351 (1983).CrossRefGoogle Scholar
36Lakshmikantha, M. G. and Sekhar, J. A., unpublished results, University of Cincinnati (1992).Google Scholar
37Boldyrev, V. V., Aleksandrov, V. V., Korchagin, M. A., Tolochko, B. P., Sokolov, A. S., Sheromov, M. A., and Lyakhov, N. Z., Dokl. Akad. Nauk SSSR 259, 1127 (1981).Google Scholar
38Rice, R. W., Richardson, G. Y., Kunetz, J. M., Schroeter, T., and McDonough, W. J., Adv. Ceram. Mater. 2 (3A), 222 (1987).Google Scholar
39Rice, R. W., McDonough, W. J., Richardson, G. Y., Kunetz, J. M., and Schroeter, T., in Proceedings of the DARPA/Army SHS Symposium, Daytona Beach, FL (1985), p. 293.Google Scholar
40Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1989), Vol. 15.02, p. 109.Google Scholar
41Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H., Binary Alloy Phase Diagrams, 1990, Vol. 1, p. 183.Google Scholar
42Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, 1973), p. 489.Google Scholar
43Ho, C. T., Cheng, C. J., and Sekhar, J. A., Metall. Trans. A 22A, 225 (1991).Google Scholar
44Lin, C. S., Cheng, C. J., and Sekhar, J. A., in Physical Metallurgy and Processing of Intermetallic Compounds, edited by Stoloff, N. and Sikka, V. K. (1993, in press).Google Scholar
45Brandes, E. A. and Brook, G. B., Smithells Metals Reference Book (Butterworth-Heinemann Ltd., 1992).Google Scholar
46Hardt, A. P. and Phung, P. V., Combust. Frame 21, 77 (1973).Google Scholar
47Lide, D. R., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1990).Google Scholar