Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T21:18:42.404Z Has data issue: false hasContentIssue false

Rapid consolidation processing of silicon nitride powders

Published online by Cambridge University Press:  31 January 2011

J. A. Schneider
Affiliation:
Division of Materials Science and Engineering, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–5294
S. H. Risbud
Affiliation:
Division of Materials Science and Engineering, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–5294
A. K. Mukherjee
Affiliation:
Division of Materials Science and Engineering, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616–5294
Get access

Abstract

Using a Plasma Assisted Sintering (PAS) process, submicron size, silicon nitride powders were consolidated to >99% of the theoretical density (TD) at 1750 °C in less than 5 min with retention of the a phase and the submicron grain size. The silicon nitride powders were sintered with 5 wt.% Y2O3 and 5 wt.% Y2O3 + 5 wt. % MgAl2O4 additives. The PAS processing method for the silicon nitride additive mixtures is attractive for retention of fine-grained microstructures favorable for superplastic deformation. Post superplastic forming heat treatments to transform the α−Si3N4 to lath-like, creep-resistant β−Si3N4 is another feature of the present processing method.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gazza, G. E., J. Am. Ceram. Soc. 56 (12), 662 (1973).Google Scholar
2.Mitomo, M., J. Mater. Sci. 10, 1169 (1975).Google Scholar
3.Oda, I., Kaneno, M., and Yamamoto, Y., Nitrogen Ceramics, edited by Riley, F. L. (Nordhoff Leyd, N. E. Amsterdam, 1977), p. 359.Google Scholar
4.Okada, H., Homma, K., Fujikawa, T., and Kanda, T., Science of Sintering 20 (2/3), 127 (1988).Google Scholar
5.Sutton, W. H., Ceram. Bull. 68 (2), 376 (1989).Google Scholar
6.Risbud, S. H., Shan, C-H., Kim, M. J., and Mukherjee, A. K., J. Mater. Res. 10, 237 (1995).Google Scholar
7.Risbud, S. H., Groza, J. R., and Kim, M. J., Philos. Mag. B 69, 525 (1994).Google Scholar
8.Shan, C. H. and Risbud, S. H., Physica C 222, 393 (1994).Google Scholar
9.Risbud, S.H. and Shan, C.H., Mater. Lett. 20, 149 (1994).CrossRefGoogle Scholar
10.Jones, G., Groza, J. R., Yamazaki, K. Y., and Shoda, K., Mater. Manuf. Process. 9 (6) (1994).Google Scholar
11.Gazzara, C.P. and Messier, D. R., Am. Ceram. Soc. Bull. 56 (9), 777 (1977).Google Scholar
12.Messier, D. R. and Riley, F. L., Nitrogen Ceramics, edited by Riley, F. L., (Noordhoff International Printing, 1977), pp. 141149.CrossRefGoogle Scholar
13.Bowen, L. J., Weston, R. J., Carruthers, T. G., and Brook, R. J., J. Mater. Sci. 13, 341 (1978).Google Scholar
14.Knoch, H. and Gazza, G. E., Ceramurgia International 6 (2), 51 (1980).CrossRefGoogle Scholar
15.Kramer, M., Hoffmann, M. J. and Petzow, G., Acta Metall. Mater. 41 (10), 2939 (1993).Google Scholar