Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T07:49:44.923Z Has data issue: false hasContentIssue false

Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid

Published online by Cambridge University Press:  03 March 2011

A. Cuneyt Tas
Affiliation:
School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634
Sarit B. Bhaduri
Affiliation:
School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634
Get access

Abstract

In this paper, we report the utilization of high ionic strength (>1100 mM) calcium phosphate solutions in depositing 20–65-μm-thick, bonelike apatitic calcium phosphate on Ti6Al4V within 2–6 h, at room temperature. The super-strength solution used here multiplied the concentrations of calcium and phosphate ions in human plasma or simulated body fluid (SBF) by a factor of ten. The interesting features of the technique are given in the following. First, the solutions did not contain any buffering agents, such as Tris or Hepes. Second, during the process, homogeneous formation of calcium phosphate nano-clusters took place. However, their presence did not adversely affect the coating process. Third, other than simple surface treatments to begin with, no other additional intermediate steps were necessary. The only step needed after the preparation of the solution from reagents is the addition of proper amounts of NaHCO3 to raise the pH to 6.5 prior to the coating procedure. Fourth, there is no CO2 bubbling required, and hence, this is a robust process. Fifth, such a procedure led to a significant enhancement of coating rate enabling the formation in as little as 2–6 h. Coating proceeded with a linear rate. Sixth, the adhesion strength (12 ± 2 MPa) of the present coatings was comparable to coatings produced by soaking in 1.5× SBF solutions over a prolonged period of time, typically two to three weeks. Finally, the carbonate content (8 wt%) and Ca/P molar ratio (1.57) qualify the coating as bonelike.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non-Cryst. Solids 120, 138 (1990).CrossRefGoogle Scholar
2.Kokubo, T.: Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 46, 2519 (1998).CrossRefGoogle Scholar
3.Kokubo, T., Kim, H.M., Kawashita, M. andNakamura, T.: Bioactive metals: Preparation and properties. J. Mater. Sci. Mater. Med. 15, 99 (2004).CrossRefGoogle ScholarPubMed
4.Hanks, J.H. andWallace, R.E.: Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. Exp. Biol. Med. 71, 196 (1949).CrossRefGoogle ScholarPubMed
5.Frauchiger, L., Taborelli, M., Aronsson, B.O. andDescouts, P.: Ion adsorption on titanium surfaces exposed to a physiological solution. Appl. Surf. Sci. 143, 67 (1999).CrossRefGoogle Scholar
6.Kim, H.M., Takadama, H., Miyaji, F., Kokubo, T., Nishiguchi, S. andNakamura, T.: Formation of bioactive functionally graded structure on Ti-6Al-4V alloy by chemical surface treatment. J. Mater. Sci. Mater. Med. 11, 555 (2000).CrossRefGoogle ScholarPubMed
7.Oyane, A., Onuma, K., Ito, A., Kim, H.M., Kokubo, T. andNakamura, T.: Formation and growth of clusters in conventional and new kinds of simulated body fluids. J. Biomed. Mater. Res. 64A, 339 (2003).CrossRefGoogle Scholar
8.Serro, A.P. andSaramago, B.: Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids. Biomaterials 24, 4749 (2003).CrossRefGoogle ScholarPubMed
9.Dorozhkina, E.I. andDorozhkin, S.V.: Surface mineralisation of hydroxyapatite in modified simulated body fluid (mSBF) with higher amounts of hydrogencarbonate ions. Colloids Surf. A 210, 41 (2002).CrossRefGoogle Scholar
10.Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 21, 1429 (2000).Google Scholar
11.Dorozhkina, E.I. andDorozhkin, S.V.: Structure and properties of the precipitates formed from condensed solutions of the revised simulated body fluid. J. Biomed. Mater. Res. 67A, 578 (2003).CrossRefGoogle Scholar
12.Takadama, H., Kim, H.M., Kokubo, T. andNakamura, T.: TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 57, 441 (2001).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
13.Habibovic, P., Barrere, F., van Blitterswijk, C.A., de Groot, K. andLayrolle, P.: Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 85, 517 (2002).CrossRefGoogle Scholar
14.Barrere, F., van Blitterswijk, C.A., de Groot, K. andLayrolle, P.: Influence of ionic strength and carbonate on the Ca-P coating formation from SBF x 5 solution. Biomaterials 23, 1921 (2002).CrossRefGoogle Scholar
15.Barrere, F., van Blitterswijk, C.A., de Groot, K. andLayrolle, P.: Nucleation of biomimetic Ca-P coatings on Ti6Al4V from SBF x 5 solution: Influence of magnesium. Biomaterials 23, 2211 (2002).CrossRefGoogle ScholarPubMed
16.Barrere, F., van der Valk, C.M., Dalmeijer, R.A.J., van Blitterswijk, C.A., de Groot, K. andLayrolle, P.: In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J. Biomed. Mater. Res. 64A, 378 (2003).CrossRefGoogle Scholar
17.Barrere, F., van der Valk, C.M., Meijer, G., Dalmeijer, R.A.J., de Groot, K. andLayrolle, P.: Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J. Biomed. Mater. Res. 67B, 655 (2003).CrossRefGoogle Scholar
18.Dorozhkin, S.V., Dorozhkina, E.I. andEpple, M.: A model system to provide good in vitro simulation of biological mineralization. Cryst. Growth Design 4, 389 (2004).CrossRefGoogle Scholar
19.Dalconi, M.C., Meneghini, C., Nuzzo, S., Wenk, R. andMobilio, S.: Structure of bioapatite in human foetal bones: An x-ray diffraction study. Nucl. Instrum. Meth. B 200, 406 (2003).CrossRefGoogle Scholar
20.LeGeros, R.Z.Calcium Phosphates in Oral Biology and Medicine (Karger Publications, Basel, Switzerland, 1991), pp. 4–44; 108–114Google ScholarPubMed
21. Designation C-633. Standard test method for adhesion strength of flame-sprayed coatings, Annual Book of ASTM Standards, Vol. 3.01 (American Society for Testing and Materials, Philadelphia, PA, 1993), pp. 665669Google Scholar
22.Kokubo, T., Miyaji, F., Kim, H.M. andNakamura, T.: Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc 79, 1127 (1996).CrossRefGoogle Scholar
23.Jonasova, L., Mueller, F.A., Helebrant, A., Strnad, J. andGreil, P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25, 1187 (2004).CrossRefGoogle ScholarPubMed
24.Kim, H.M., Miyaji, F., Kokubo, T. andNakamura, T.: Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci. Mater. Med. 8, 341 (1997).CrossRefGoogle ScholarPubMed
25.Masaki, N., Uchida, S., Yamane, H. andSato, T.: Characterization of a new potassium titanate, KTiO2(OH) synthesized via hydrothermal method. Chem. Mater. 14, 419 (2002).CrossRefGoogle Scholar
26.Yuan, Z.Y., Zhang, X.B. andSu, B.L.: Moderate hydrothermal synthesis of potassium titanate nanowires. Appl. Phys. A 78, 1063 (2004).CrossRefGoogle Scholar
27.Marques, P.A.A.P., Magalhaes, M.C.F. andCorreia, R.N.: Inorganic plasma with physiological CO2/HCO3- buffer. Biomaterials 24, 1541 (2003).CrossRefGoogle ScholarPubMed
28.Takadama, H., Hashimoto, M., Mizuno, M., Ishikawa, K. andKokubo, T.: Newly improved simulated body fluid. Key Eng. Mater 254-256, 115 (2004).Google Scholar
29.Layrolle, P., de Groot, K., de Bruijn, J.D., van Blitterswijk, C.A., and Huipin, Y.: Method for coating medical implants. U.S. Patent No: 6 207 218 (March 27, 2001).Google Scholar
30.Vereecke, G. andLemaitre, J.: Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O. J. Cryst. Growth 104, 820 (1990).CrossRefGoogle Scholar
31.Wen, H.B., Wolke, J.G.C., de Wijn, J.R., Liu, Q., Cui, F.Z. andde Groot, K.: Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials 18, 1471 (1997).CrossRefGoogle ScholarPubMed
32.Choi, J., Bogdanski, D., Koeller, M., Esenwein, S.A., Mueller, D., Muhr, G. andEpple, M.: Calcium phosphate coating of nickel-titanium shape memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials 24, 3689 (2003).CrossRefGoogle Scholar
33.Yin, X. andStott, M.J.: Biological calcium phosphates and Posner’s cluster. J. Chem. Phys. 118, 3717 (2003).CrossRefGoogle Scholar
34.Posner, A.S. andBetts, F.: Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 8, 273 (1975).CrossRefGoogle Scholar
35.Li, P.J., Kangasniemi, I., de Groot, K. andKokubo, T.: Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc. 77, 1307 (1994).CrossRefGoogle Scholar
36.Onuma, K. andIto, A.: Cluster growth model for hydroxyapatite. Chem. Mater. 10, 3346 (1998).CrossRefGoogle Scholar