Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T18:35:38.314Z Has data issue: false hasContentIssue false

Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites

Published online by Cambridge University Press:  31 January 2011

Christophe Stéphan
Affiliation:
Laboratoire de Physique Cristalline, Institut des Matériaux Jean Rouxel, BP 32229, 44322 Nantes cedex 3, France
Thien Phap Nguyen
Affiliation:
Laboratoire de Physique Cristalline, Institut des Matériaux Jean Rouxel, BP 32229, 44322 Nantes cedex 3, France
Bernd Lahr
Affiliation:
Department of Physics, Trinity College, Dublin 2, Ireland
Werner Blau
Affiliation:
Department of Physics, Trinity College, Dublin 2, Ireland
Serge Lefrant*
Affiliation:
Laboratoire de Physique Cristalline, Institut des Matériaux Jean Rouxel, BP 32229, 44322 Nantes cedex 3, France
Olivier Chauvet
Affiliation:
Laboratoire de Physique Cristalline, Institut des Matériaux Jean Rouxel, BP 32229, 44322 Nantes cedex 3, France
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thin films of poly(methyl methacrylate)–multiwalled nanotubes composites were produced by spin coating using different nanotube concentrations. The materials were characterized by scanning electron microscopy, energy-dispersive x-ray analysis, and Raman spectroscopy to obtain information on the possible interactions between the constituents and to control the homogeneity of the films. Electrical conductivity measurements of the composites, as a function of the nanotube concentration, show a percolation threshold at very low concentration. Also, the JE characteristics exhibits a nonlinear behavior at low concentration, becoming linear far above the threshold.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C., Nature 391, 59 (1998).CrossRefGoogle Scholar
2.Odom, T.W., Huang, J.L., Kim, P., and Lieber, C.M., Nature 391, 62 (1998).CrossRefGoogle Scholar
3.de Heer, W.A., Cha^telain, A., and Ugarde, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
4.Omel’yanovskii, O.E., Tsebro, V.I., Lebedev, O.I., Kiselev, A.N., Bondareko, V.I., Kiselev, N.A., Ja. Kosakovskaja, Z., and Chernozatonskii, L.A., JETP Lett. 62, 503 (1995).Google Scholar
5.Wang, Q.H., Corrigan, T.D., Dai, J.Y., Chang, R.P.H., and Krauss, A.R., Appl. Phys. Lett. 70, 3308 (1997).CrossRefGoogle Scholar
6.Sinitsyn, N.I., Gulyaev, Y.V., Torgasiov, G.V., Chernozatonskii, L.A., Kosakovskaya, Z.Y., Zakharchenko, Y.F., Kiselev, N.A., Musatov, A.L., Zhbanov, A.I., Mevlyut, S.T., and Glukhova, O.E., Appl. Surf. Sci. 111, 145 (1997).CrossRefGoogle Scholar
7.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
8.Curran, S., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., and Stevens, A., Adv. Mater. 10, 1091 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
9.Coleman, J.N., Curran, S., Dalton, A.B., Darvey, A.P., McCarthy, B., Blau, W., and Barklie, R.C., Phys. Rev. B 58, 7492 (1998).CrossRefGoogle Scholar
10.Ste´phan, C., Nguyen, T.P., de la Chapelle, M. Lamy, Lefrant, S., Journet, C., and Bernier, P., Synth. Met. 108, 139 (2000).CrossRefGoogle Scholar
11.Buisson, J.P., Chauvet, O., Lefrant, S., Ste´phan, C., and Benoit, J.M., in Nanotubes and Related Materials, edited by Rao, A.M., 2000 MRS Fall Meeting, Boston, MA (Warrendale, PA, 2001), p. A14.12.1.Google Scholar
12.de la Chapelle, M.Lamy, Lefrant, S., Journet, C., Maser, W., Bernier, P., and Loiseau, A., Carbon 36, 705 (1998).CrossRefGoogle Scholar
13.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de la Chapelle, M. Lamy, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature (London) 388, 756 (1997).CrossRefGoogle Scholar
14.Bazhenov, A.V., Kveder, V.V., Maksimov, A.A., Tartakovskii, I.I., Oganyan, R.A., Ossipyan, Y.A., and Shalynin, A.I., J. Exp. Theor. Phys. 86, 1030 (1998).Google Scholar
15.Jantoljak, H., Salvetat, J.P., Forro, L., and Thomsen, C., Appl. Phys. A 67, 113 (1998).CrossRefGoogle Scholar
16.Kataura, H., Achiba, Y., Zhao, X., and Ando, Y., in Amorphous and Nanostructured Carbon, edited by Sullivan, J.P., Robertston, J., Zhou, O., Allen, J.B., and Coll, B.F. (Warrendale, PA, 2000), p. 113.Google Scholar
17.Kaiser, A.B., Du¨sberg, G., and Roth, S., Phys. Rev. B 57, 1418 (1998).CrossRefGoogle Scholar
18.Gurland, J., Trans. Met. Soc. AIME 236, 642 (1996).Google Scholar
19.Singh, V., Tiwari, A.N., and Kulkarni, A.R., Mater. Sci. Eng. B 41, 310 (1996).CrossRefGoogle Scholar
20.Makhlouki, M., Morsli, M., Bonnet, A., Conan, A., Pron, A., and Lefrant, S., J. Appl. Polym. Sci. 44, 443 (1992).CrossRefGoogle Scholar