Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T05:28:22.205Z Has data issue: false hasContentIssue false

Raman spectra during the electropolymerization of polypyrrole

Published online by Cambridge University Press:  31 January 2011

C. H. Olk
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, Michigan 48090
C. P. Beetz Jr.
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, Michigan 48090
J. Heremans
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, Michigan 48090
Get access

Abstract

In situ Raman spectra were taken, between 800 and 1200 cm−1, on films of polypyrrole during both the electrochemical growth and the reduction reactions. During the reduction reaction we observed a frequency shift of approximately 10 cm−1 of two in-plane vibrational modes. We attribute these shifts to the bond conjugational defects induced by doping and undoping of the polypyrrole films. A quantitative model for this phenomenon based on normal mode calculations is presented. The electrical conductivity and thermopower of polypyrrole doped with tetrafluoroborate and iron chloride ions is also reported for temperatures between 10 and 350K.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kanazawa, K. K., Diaz, A. F., M. T. Krounbi and Street, G. B., Synth. Met. 4, 119 (1981); G. B. Street, T. C. Clarke, M. Krounbi, K. Kanazawa, V. Lee, P. Pfluger, J. C. Scott, and G. Weiser, Mol. Cryst. Liq. Cryst. 83, 253 (1982); G. B. Street, S. E. Lindsey, A. I.|Nazzal, and K. J. Wynne, Mol. Cryst. Liq. Cryst. 118, 137 (1985).CrossRefGoogle Scholar
2Diaz, A. F., Castillo, J. I., Logan, J. A., and Lee, W.-Y., J. Electroanal. Chem. 129, 115 (1981).Google Scholar
3Watanabe, A., Tanaka, M., and Tanaka, J., Bull. Chem. Soc. Jpn. 54, 2278 (1981).CrossRefGoogle Scholar
4Devreux, F., Genoud, F., Nechtschein, M., Travers, J. P., and Bidan, G., J. Phys. (Paris) 44, C3261 (1983).Google Scholar
5Scott, C., Pfluger, P., Krounbi, M. T., and Street, G. B., Phys. Rev. B 28, 2140 (1983).CrossRefGoogle Scholar
6Yakushi, K., Lauchlan, L. J., Clarke, T. C., and Street, G. B., J. Chem. Phys. 79, 4774 (1983).Google Scholar
7Bredas, J. L., Scott, J. C., Yakushi, K., and Street, G. B., Phys. Rev. B 30, 1023 (1984).CrossRefGoogle Scholar
8Scott, D. W., J. Mol. Spectrosc. 37, 77 (1971).CrossRefGoogle Scholar
9Bredas, J. L., Themans, B., and Andre, J. M., Phys. Rev. B 27, 7827 (1983).CrossRefGoogle Scholar
10Bredas, J. L., Themans, B., Fripiat, J. G., and Andre, J. M., Phys. Rev. B 29, 6761 (1984).Google Scholar
11Bak, B., Christensen, D., Hansen, L., and Anderson, J. Rastrup, J. Chem. Phys. 24, 720 (1956).Google Scholar
12Zerbi, G. and Sandroni, S., Spectrochim. Acta A 24, 511 (1968).Google Scholar
13Zannoni, S. and Zerbi, G., J. Chem. Phys. 82, 31 (1985).CrossRefGoogle Scholar