Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T01:52:41.207Z Has data issue: false hasContentIssue false

Radiation stability of gadolinium zirconate: A waste form for plutonium disposition

Published online by Cambridge University Press:  31 January 2011

S. X. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109
B. D. Begg
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
L. M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109
R. C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
K. V. Govidan Kutty
Affiliation:
Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 60312, India
Get access

Abstract

Zirconate and titanate pyrochlores were subjected to 1 MeV of Kr+ irradiation. Pyrochlores in the Gd2(ZrxTi1-x)2O7 system (x = 0, 0.25, 0.5, 0.75, 1) showed a systematic change in the susceptibility to radiation-induced amorphization with increasing Zr content. Gd2Ti2O7 amorphized at relatively low dose (0.2 displacement per atom at room temperature), and the critical temperature for amorphization was 1100 K. With increasing zirconium content, the pyrochlores became increasingly radiation resistant, as demonstrated by the increasing dose and decreasing critical temperature for amorphization. Pyrochlores highly-enriched in Zr (Gd2Zr2O7, Gd2Zr1.8Mg0.2O6.8, Gd1.9Sr0.1Zr1.9Mg0.1O6.85, and Gd1.9Sr0.1Zr1.8Mg0.2O6.75) could not be amorphized, even at temperature as low as 25 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pillay, K.K.S, Radwaste Jan, 60 (1996).Google Scholar
2.Taubes, G., Science 263, 629 (1994).CrossRefGoogle Scholar
3.Stoll, W., MRS Bull. 23(3), 6 (1998).CrossRefGoogle Scholar
4.Oversby, V.M., McPheeters, C.C., Degueldre, C., and Paratte, J.M., J. Nucl. Mater. 245, 17 (1997).CrossRefGoogle Scholar
5.Panel on Reactor-Related Options for the Disposition of Excess Weapons Plutonium, National Research Council, Management and Disposition of Excess Weapons Plutonium: Reactor-Related Options (National Academy Press, Washington, D.C., 1995).Google Scholar
6. Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement, Jan. 14, 1997 (U.S. Department of Energy, Washington, DC, 1997).Google Scholar
7.Matzke, Hj. and van Geel, J., in Disposal of Weapon Plutonium Approaches and Prospects, NATO ASI series, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, Dordrecht, 1996), p. 93.CrossRefGoogle Scholar
8.Ewing, R.C., Weber, W.J., and Lutze, W., in Disposal of Weapon Plutonium, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996), p. 65.Google Scholar
9.Ewing, R.C., Proc. Natl. Acad. Sci. USA 96, 3432 (1999).CrossRefGoogle Scholar
10.Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W., and Major, A., Nature 278, 219 (1979).Google Scholar
11.Jostsons, A., Vance, E.R., Day, R.A., Hart, K.P., and Stewart, M.W.A, in Proceedings of International Topical Meeting on Nuclear and Hazardous Waste Management, Spectrum, 2032 (1996).Google Scholar
12.Donald, I. W., Metcalfe, B. L. and Taylor, R.N.J, J. Mater. Sci. 32, 5851 (1997)CrossRefGoogle Scholar
13.Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr, Prog. Nucl. Energy 29, 63 (1995).Google Scholar
14.Weber, W.J., Ewing, R.C., Catlow, C.R.A, de la Rubia, T. Diaz, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H, Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
15.Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
16.Chakoumakos, B.C. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C.M., Stone, J.A., and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985), pp. 641646.Google Scholar
17.Shoup, S.S., Bamberger, C.E., and Haire, R.G., J. Am. Ceram. Soc. 79, 1489 (1996).CrossRefGoogle Scholar
18.Clinard, F.W. Jr, Peterson, D.E., Rohr, D.L., and Hobbs, L.W., J. Nucl. Mater. 126, 245 (1989).CrossRefGoogle Scholar
19.Muromura, T. and Hinatsu, Y., J. Nucl. Mater. 151, 55 (1987).CrossRefGoogle Scholar
20.Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Min. 16, 2 (1988).CrossRefGoogle Scholar
21.Wald, J.W. and Offerman, P., in Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982), pp. 369378.Google Scholar
22.Weber, W.J., Wald, J.W., and Matzke, Hj., Mater. Lett. 3, 173 (1985).CrossRefGoogle Scholar
23.Weber, W.J., Wald, J.W., and Matzke, Hj., J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
24.Weber, W.J., Hess, N.J., and Maupin, G.D., Nucl. Instrum. Meth. B65, 102 (1992).Google Scholar
25.Weber, W.J. and Hess, N.J., Nucl. Instrum. Meth. B80/81, 1245 (1993).Google Scholar
26.Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., and Lumpkin, G.R., Nucl. Instrum. Meth. B148, 704 (1999).Google Scholar
27.Begg, B.D., Weber, W.J., Devanathan, R., Icenhower, J.P., Thevuthasan, S., and McGrail, B.P., in Waste Management Science and Technology in the Ceramic and Nuclear Industries, edited by Smith, G.L., Chandler, G.T., Mobasher, B. (The American Ceramic Society, Westerville, OH, 1999, in press).Google Scholar
28.Smith, K.L., Zaluzec, N.J., and Lumpkin, G.R., J. Nucl. Mater. 250, 36 (1997).Google Scholar
29.Moon, P.K. and Tuller, H.L., in Solid State Ionics, edited by Nasri, G., Huggins, R.A., and Shriver, D.F. (Mater. Res. Soc. Symp. Proc. 135, Pittsburgh, PA, 1989), pp. 149163.Google Scholar
30.Ewing, R.C. and Wang, L.M., Nucl. Instrum. Meth. B65, 319 (1992).CrossRefGoogle Scholar
31.Meldrum, A., Boatner, L.A., Zinkle, S.J., Wang, S.X., Wang, L.M., and Ewing, R.C., Can. Miner. 37, 207 (1999).Google Scholar
32.McColm, I.J., Ceramic Science for Materials Technologists (Chapman and Hall, New York, 1983), p. 280.Google Scholar
33.Yu, N., Sickafus, K.E., Kodali, P., and Nastasi, M., J. Nucl. Mater. 244, 266 (1997).CrossRefGoogle Scholar
34.Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramm, E.J., in Radioactive Waste Forms for the Future, edited by Lutz, W. and Ewing, R.C. (North-Holland, New York, 1988), pp. 233334.Google Scholar
35.Hart, K.P., Vance, E.R., Stewart, M.W.A, Weir, J., Carter, M.L., Hambley, M., Brownscombe, A., Day, R.A., Leung, S., Ball, C.J., Ebbinghaus, B., Gray, L., and Kan, T., in Scientific Basis for Nuclear Waste Management XXI, edited by McKinley, I.G. and McCombie, C. (Mater. Res. Soc. Symp. Proc. 506, Warrendale, PA, 1998), pp. 161168.Google Scholar
36.Hayakawa, I. and Kamizono, H., J. Mater. Sci. 28, 513 (1993).CrossRefGoogle Scholar
37.Dutta, N.C., Radiochim. Acta 79, 25 (1997).CrossRefGoogle Scholar