Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T06:31:36.783Z Has data issue: false hasContentIssue false

Quasi-static compressive property of metallic glass/porous tungsten bi-continuous phase composite

Published online by Cambridge University Press:  01 June 2006

Haifeng Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Aimin Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Hong Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Wensheng Sun
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Bingzhe Ding
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Zhuangqi Hu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Hongnian Cai
Affiliation:
Beijing Institute of Technology, Beijing 100081, China
Lu Wang
Affiliation:
Beijing Institute of Technology, Beijing 100081, China
Wen Li
Affiliation:
Shenyang Institute of Technology, Shenyang 110168, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A metallic glass/porous tungsten bi-continuous phase composite was prepared by pressure infiltration whose quasi-static compressive stress and strain to macroscopic failure are much higher than those of all the previous tungsten-reinforced metallic glass matrix composites. It deserves to be mentioned that because of its high-yield strength and high elastic strain limit, metallic glass seems to be used as the reinforcement to strengthen the crystalline materials in the bi-continuous phase composite materials.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans. JIM 34, 1234 (1993).CrossRefGoogle Scholar
2.Peker, W.L., Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
3.Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
4.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
5.Zhang, Q.S., Zhang, H.F., Deng, Y.F., Ding, B.Z., Hu, Z.Q.: Bulk metallic glass formation of Cu–Zr–Ti–Sn alloys. Scripta Mater. 49, 273 (2003).CrossRefGoogle Scholar
6.Gilbert, C.J., Ritchie, R.O., Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
7.Kawamura, K., Kato, H., Inoue, A., Masumoto, T.: Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state. Appl. Phys. Lett. 67, 2008 (1995).CrossRefGoogle Scholar
8.Szuecs, F., Kim, C.P., Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).CrossRefGoogle Scholar
9.Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).CrossRefGoogle Scholar
10.Jiao, J., Kecskes, L.J., Hufnagel, T.C., Ramesh, K.T.: Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression. Metall. Mater. Trans. 35A, 3439 (2004).CrossRefGoogle Scholar
11.Li, H., Subhash, G., Kecskes, L.J., Dowding, R.J.: Mechanical behavior of tungsten preform reinforced bulk metallic glass composites. Mater. Sci. Eng. A 403, 134 (2005).CrossRefGoogle Scholar
12.Choi-Yim, H., Busch, R., Köster, U., Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
13.Xu, Y.K., Xu, J.: Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites. Scripta Mater. 49, 843 (2003).CrossRefGoogle Scholar
14.Conner, R.D., Dandliker, R.B., Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
15.Choi-Yim, H., Conner, R.D., Szuecs, F., Johnson, W.L.: Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites. Scripta Mater. 45, 1039 (2001).CrossRefGoogle Scholar
16.Qiu, K.Q., Wang, A.M., Zhang, H.F., Ding, B.Z., Hu, Z.Q.: Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite. Intermetallics 10, 1283 (2002).CrossRefGoogle Scholar