Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:33:28.676Z Has data issue: false hasContentIssue false

Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix composites

Published online by Cambridge University Press:  31 January 2011

J.W. Qiao
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
P. Feng
Affiliation:
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Y. Zhang*
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Q.M. Zhang
Affiliation:
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200
G.L. Chen
Affiliation:
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Quasi-static and dynamic deformation behaviors of Zr-based bulk-metallic-glass-matrix composites, fabricated by Bridgman solidification, were investigated in this study. Upon quasi-static compressive loading, the composites exhibit ultrahigh strength, accompanied by considerable plasticity. The multiplication of shear bands on the lateral surface of deformed samples, and the highly-dense liquid drops on the fracture surface, are in agreement with the improved plasticity. However, upon dynamic loading, the mechanical properties of the composites deteriorate considerably, due to insufficient time to form profuse shear bands. The strain-rate responses of the mechanical properties of the crystalline alloys and the in situ and ex situ bulk metallic glass composites are compared, and the different deformation mechanisms of the in situ composites upon quasi-static and dynamic loading are explained.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960)CrossRefGoogle Scholar
2.Miller, M.K., Liaw, P.K.: Bulk Metallic Glasses (Springer, New York 2007)Google Scholar
3.Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000)CrossRefGoogle ScholarPubMed
4.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008)CrossRefGoogle ScholarPubMed
5.Hofmann, D.C., Suh, J.Y., Wiest, A., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Nat. Acad. Sci. U.S.A. 105, 20136 (2008)CrossRefGoogle ScholarPubMed
6.Qiao, J.W., Wang, S., Zhang, Y., Liaw, P.K., Chen, G.L.: Large plasticity and tensile necking of Zr-based bulk-metallic-glass- matrix composites synthesized by the Bridgman solidification. Appl. Phys. Lett. 94, 151905 (2009)CrossRefGoogle Scholar
7.Zhang, Y., Xu, W., Tan, H., Li, Y.: Microstructure control and ductility improvement of La-Al-(Cu,Ni) composites by Bridgman solidification. Acta Mater. 53, 2607 (2005)CrossRefGoogle Scholar
8.Qiao, J.W., Zhang, Y., Liaw, P.K.: Tailoring microstructures and mechanical properties of Zr-based bulk metallic glass matrix composites by the Bridgman solidification. Adv. Eng. Mater. 10, 1039 (2008)CrossRefGoogle Scholar
9.Lee, D.G., Kim, Y.G., Hwang, B., Lee, S., Lee, Y.T.: Effects of temperature on dynamic compressive properties of Zr-based amorphous alloy and composite. Mater. Sci. Eng., A 472, 316 (2008)CrossRefGoogle Scholar
10.Qiao, J.W., Zhang, Y., Feng, P., Zhang, Q.M., Chen, G.L.: Strain rate response of mechanical behaviors for a Zr-based bulk metallic glass matrix composite. Mater. Sci. Eng., A 515, 141 (2009)CrossRefGoogle Scholar
11.Armstrong, R.W., Walley, S.M.: High strain rate properties of metals and alloys. Int. Mater. Rev. 53, 105 (2008)CrossRefGoogle Scholar
12.Lee, M.L., Li, Y., Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004)CrossRefGoogle Scholar
13.Bian, Z., Kato, H., Qin, C.L., Zhang, W., Inoue, A.: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005)CrossRefGoogle Scholar
14.Hui, X., Dong, W., Chen, G.L., Yao, K.F.: Formation, microstructure and properties of long-period order structure reinforced Mg-based metallic glass composites. Acta Mater. 55, 907 (2007)CrossRefGoogle Scholar
15.Szuecs, F., Kim, C.P., Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001)CrossRefGoogle Scholar
16.Ma, H., Xu, J., Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003)CrossRefGoogle Scholar
17.Calin, M., Zhang, L.C., Eckert, J.: Tailoring of microstructure and mechanical properties of a Ti-based bulk metallic glass-forming alloy. Scr. Mater. 57, 1101 (2007)CrossRefGoogle Scholar
18.Guo, F.Q., Poon, S.J., Shiflet, G.J.: Networking amorphous phase reinforced titanium composites which show tensile plasticity. Philos. Mag. Lett. 88, 615 (2005)CrossRefGoogle Scholar
19.He, G., Eckert, J., Loser, W., Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003)CrossRefGoogle ScholarPubMed
20.Zhou, Y.J., Zhang, Y., Wang, Y.L., Chen, G.L.: Solid-solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007)CrossRefGoogle Scholar
21.Duan, G., Wiest, A., Lind, M.L., Kahl, A., Johnson, W.L.: Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scr. Mater. 58, 465 (2008)CrossRefGoogle Scholar
22.Chen, G., Bei, H., Cao, Y., Gali, A., Liu, C.T., George, E.P.: Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases. Appl. Phys. Lett. 95, 081908 (2009)CrossRefGoogle Scholar
23.Liu, C.T., Healtherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., Inoue, A.: Test environment and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 (1998)CrossRefGoogle Scholar
24.Bruck, H.A., Rosakis, A.J., Johnson, W.L.: The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503 (1996)CrossRefGoogle Scholar
25.Lewandowski, J.J., Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006)CrossRefGoogle Scholar
26.Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G.Y., Liu, C.T., Denta, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005)CrossRefGoogle Scholar
27.Zener, C., Hollomon, J.H.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944)CrossRefGoogle Scholar
28.Rohr, I., Nahme, H., Thoma, K.: Materials characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates. Int. J. Impact Eng. 31, 401 (2005)CrossRefGoogle Scholar
29.Chiou, S.T., Tsai, H.L., Lee, W.S.: Impact mechanical response and microstructure evolution of Ti alloy under various temperatures. J. Mater. Process. Technol. 209, 2282 (2009)CrossRefGoogle Scholar
30.Subhash, G., Dowding, R.J., Kecskes, L.J.: Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy. Mater. Sci. Eng., A 334, 33 (2002)CrossRefGoogle Scholar
31.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr. Mater. 46, 43 (2002)CrossRefGoogle Scholar
32.Sunny, G., Yuan, F., Prakash, V., Lewandowski, J.: Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. J. Appl. Phys. 104, 093522 (2008)CrossRefGoogle Scholar
33.Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 (2006)CrossRefGoogle Scholar
34.Jiang, W.H., Liao, H.H., Liu, F.X., Choo, H., Liaw, P.K.: Rate-dependence temperature increase in shear bands of a bulk-metallic glass. Metall. Mater. Trans. A 39, 1822 (2008)CrossRefGoogle Scholar
35.Kühn, U., Eckert, J., Mattern, N., Schultz, L.: Microstructure and mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al composites with ductile bcc phase. Mater. Sci. Eng., A 375–377, 322 (2004)CrossRefGoogle Scholar
36.Löser, W., Das, J., Güth, A., Klauß, H-J., Mickel, C., Kühn, U., Eckert, J., Roy, S.K., Schultz, L.: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr-Nb-Cu-Ni-Al in situ composites. Intermetallics 12, 1153 (2004)CrossRefGoogle Scholar
37.Qiao, J.W., Zhang, Y., Liaw, P.K., Chen, G.L.: Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scr. Mater. 61, 1087 (2009)CrossRefGoogle Scholar
38.Xue, Y.F., Cai, H.N., Wang, L., Wang, F.C., Zhang, H.F.: Strength-improved Zr-based metallic glass/porous tungsten phase composite by hydrostatic extrusion. Appl. Phys. Lett. 90, 081901 (2007)CrossRefGoogle Scholar
39.Xue, Y.F., Cai, H.N., Wang, L., Wang, F.C., Zhang, H.F., Hu, Z.Q.: Deformation and failure behavior of a hydrostatically extruded Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite under dynamic compression. Compos. Sci. Technol. 68, 3396 (2008)CrossRefGoogle Scholar
40.Martin, M., Meyer, L., Kecskes, L., Thadhani, N.N.: Uniaxial and biaxial compressive response of a bulk metallic glass composite over a range of strain rates and temperatures. J. Mater. Res. 24, 66 (2009)CrossRefGoogle Scholar
41.Lee, D.G., Kim, Y.G., Lee, S., Kim, N.J.: Dynamic deformation and fracture behaviors of two Zr-based amorphous alloys. Metall. Mater. Trans. A 37, 2893 (2006)CrossRefGoogle Scholar
42.Ott, R.T., Sansoz, F., Jiao, T., Warner, D., Fan, C., Molinari, J.F., Ramesh, K.T., Hufnagel, T.C.: Yield criteria and strain-rate behavior of Zr57.4Cu16.4Ni8.2Ta8Al10 metallic-glass-matrix composites. Metall. Mater. Trans. A 37, 3251 (2006)CrossRefGoogle Scholar
43.Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002)CrossRefGoogle Scholar
44.Georgarakis, K., Aljerf, M., Li, Y., LeMoulec, A., Charlot, F., Yavari, A.R., Chornokhvostenko, K., Tabachnikova, E., Evangelakis, G.A., Miracle, D.B., Greer, A.L., Zhang, T.: Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 93, 031907 (2008)CrossRefGoogle Scholar