Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:57:52.547Z Has data issue: false hasContentIssue false

Quantity and character of grain boundary phase in mixed α′/β′ sialon ceramics

Published online by Cambridge University Press:  03 March 2011

Koji Watari
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462, Japan
Shuji Sakaguchi
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462, Japan
Shuzo Kanzaki
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462, Japan
Toyohiro Hamasaki
Affiliation:
Department of Materials Science, School of Engineering, Nagaoka University of Technology, Nagaoka 940-21, Japan
Kozo Ishizaki
Affiliation:
Department of Materials Science, School of Engineering, Nagaoka University of Technology, Nagaoka 940-21, Japan
Get access

Abstract

The quantity and character of intergranular phases in mixed α′/β′ sialon ceramics were examined by low-temperature specific heat and internal friction measurements. Present results of specific heat suggest the existence of a small amount of intergranular glassy phase in mixed α′/β′ sialon ceramics. Furthermore, it can be predicted that the material possesses excellent high strength at elevated temperatures, because the temperature dependence of the internal friction in the tested material is similar to that in the annealed Si3N4 ceramics with oxide addition and Si3N4 ceramics without sintering aid.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lange, F. F., J. Am. Ceram. Soc. 57, 8487 (1974).CrossRefGoogle Scholar
2Tsai, R. L. and Raj, R., J. Am. Ceram. Soc. 63, 513517 (1980).CrossRefGoogle Scholar
3Hampshire, S., Park, K. H., Thompson, D. P., and Jack, K. H., Nature 274, 880882 (1978).CrossRefGoogle Scholar
4Ishizawa, K., Ayuzawa, N., Shiratani, A., Takai, M., Uchida, N., and Mitomo, M., in Proc. 2nd Symp. on Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (German Ceramic Society, Bad Honnef, Federal Republic of Germany, 1986), pp. 511518.Google Scholar
5Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 16371642 (1972).CrossRefGoogle Scholar
6Jack, K. H. and Wilson, W. I., Nature (London), Phys. Sci. 238, 2829 (1977).CrossRefGoogle Scholar
7Nagel, A., Greil, P., and Petzow, G., Rev. de Chemie Minerale 22, 437447 (1985).Google Scholar
8Jasper, C. A. and Lewis, M. H., in Proc. 4th Symp. on Ceramic Materials and Components for Engines, edited by Carlsson, R., Johansson, T., and Kahlman, L. (Elsevier Applied Science, London and New York, 1992), pp. 424431.CrossRefGoogle Scholar
9Watari, K., Yasuoka, M., Valecillos, M. C., and Kanzaki, S., unpublished.Google Scholar
10Watari, K., Ishizaki, K., and Mori, K., J. Am. Ceram. Soc. 74, 244246 (1991).CrossRefGoogle Scholar
11Watari, K., Seki, Y., and Ishizaki, K., J. Ceram. Soc. Jpn. 97, 174181 (1989).CrossRefGoogle Scholar
12Hamasaki, T. and Ishizaki, K., in Materials Processing and Design through Better Control of Grain Boundary Properties: Emphasizing Fine Ceramics, Proc. Int. Workshop and Fine Ceramics, edited by Ishizaki, K., Niihara, K., Isotani, M., and Ford, R. (Elsevier Science Publishers, London, U.K., 1992), pp. 5361.Google Scholar
13Matsushita, K. and Okamoto, T., in Abstract of the 102th Meeting of the Japan Institute of Metals (Japan Institute of Metals, Sendai, Japan, 1988), p. 142.Google Scholar
14Sakaguchi, S., Murayama, N., and Wakai, F., Yogyo-Kyokai-Shi 95, 12191222 (1987).CrossRefGoogle Scholar
15Tanaka, I., Pezzotti, G., Matsushita, K., Miyamoto, Y., and Okamoto, T., J. Am. Ceram. Soc. 74, 752759 (1991).CrossRefGoogle Scholar
16Huang, Z. K., Sun, W. Y., and Yan, D. S., J. Mater. Sci. Lett. 4, 225229 (1985).CrossRefGoogle Scholar
17Ukyo, Y. and Wada, S., in Euro-Ceramics Vol. 1, edited byp DeWith, G., Terpstra, R. A., and Metselaar, R. (Elsevier Applied Science, London, U.K., 1989), pp. 566572.Google Scholar
18Chatfield, C., Ekstrom, T., and Nikus, M., J. Mater. Sci. 21, 22972307 (1986).CrossRefGoogle Scholar
19Sakaguchi, S., Kodama, T., Murayama, N., and Wakai, F., J. Alloy Compound (1994, in press).Google Scholar
20For example, Rosenberg, H. M., in Low Temperature Solid State Physics (Oxford University Press, London, U.K., 1963), pp. 37.Google Scholar
21aPohl, R. O., in Amorphous Solids-Low Temperature Properties, edited by Phillips, W. A. (Springer-Verlag, West Berlin, Federal Republic of Germany, 1981), pp. 2757.CrossRefGoogle Scholar
21bLeadbetter, A.J. and Morrison, J. A., Phys. Chem. Glasses 4, 188192 (1963).Google Scholar
22Watari, K. and Ishizaki, K., in Euro-Ceramics Vol. 2, edited by DeWith, G., Terpstra, R. A., and Metselaar, R. (Elsevier Applied Science, London, U.K., 1989), pp. 277281.Google Scholar
23Awazu, K., Komura, O., and Miyake, M., J. Jpn. Soc. Powder and Powder Metall. 39, 499503 (1992).CrossRefGoogle Scholar