Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T12:08:54.604Z Has data issue: false hasContentIssue false

Quantification and control of the sulfur c(2 × 2) superstructure on {100}〈100〉 Ni for optimization of YSZ, CeO2, and SrTiO3 seed layer texture

Published online by Cambridge University Press:  31 January 2011

C. Cantoni
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. Heatherly
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M. M. Kowalewski
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
F. A. List
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. W. Ownby
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. M. Zehner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B. W. Kang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. M. Kroeger
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

We investigated the influence of a chemisorbed S template with c(2 × 2) structure on the epitaxial growth of different oxide buffer layers on {100}〈100〉 Ni. The sulfur superstructure spontaneously forms on the Ni surface during the texturing anneal as a consequence of segregation. However, depending on the initial S bulk concentration and/or specific annealing conditions, the S layer can cover less than the entire substrate's surface. We show that an incomplete c(2 × 2) coverage causes degradation of the seed buffer layer texture as compared to the substrate texture. A simple step consisting of an H2S predeposition anneal can be used to control the superstructure coverage and optimize the seed layer texture.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Qing, Christen, D.K., Norton, D.P., Budai, J.D., and Kroeger, D.M., Physica C 275, 266 (1997).CrossRefGoogle Scholar
2.Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., and Martin, P.M., JOM 51(7) (1999), p. 19.CrossRefGoogle Scholar
3.He, Q., Christen, D.K., Budai, J.D., Specht, E.D., Lee, D.F., Goyal, A., Norton, D.P., Paranthaman, M., List, F.A., and Kroeger, D.M., Physica C 275, 155 (1997).CrossRefGoogle Scholar
4.Kowalewski, M.M., List, F.A., Heatherly, L., and Kroeger, D.M. (unpublished); F.A. List, Continuous Processing of Coated Conductors, presented at the 2001 DOE Peer Review, Washington, DC (http://www.ornl.gov/HTSC/fy01peer.htm).Google Scholar
5.Cantoni, C., Christen, D.K., Feenstra, R., Norton, D.P., Goyal, A., Ownby, G.W., and Zehener, D.M., Appl. Phys. Lett. 79, 3077 (2001).CrossRefGoogle Scholar
6.Paranthaman, M., Lee, D.F., Goyal, A., Specht, E.D., Martin, P.M., Cui, X., Mathis, J.E., Feenstra, R., Christen, D.K., and Kroeger, D.M., Supercond. Sci. Technol. 12, 319 (1999).CrossRefGoogle Scholar
7.Holloway, P.H., J. Vac. Sci. Technol. 18, 653 (1981).CrossRefGoogle Scholar
8.Shoup, S.S., White, M.K., Krebs, S.L., Darnell, N., King, A.C., , Mattox, Campbell, I.H., Marken, K.R., Hong, S., , Czabaj, Paranthaman, M.P., Christen, H.M., Zhai, H.Y., and Specht, E., in The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process, edited by Paranthaman, M.P., Rupick, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, 2001), p. 239.Google Scholar
9.McIntyre, P.C., J. Appl. Phys. 89, 8074 (2001).CrossRefGoogle Scholar
10.Cantoni, C., Christen, D.K., Heatherly, L., List, F.A., Goyal, A., Ownby, G.W., and Zehner, D.M., in Proceedings of the 2002 American Ceramic Society Meeting (American Ceramic Society, Westerville, OH, 2002).Google Scholar
11.Perdereau, M. and Oudar, J., Surf. Sci. 20, 80 (1970).CrossRefGoogle Scholar
12.Andersson, S. and Pendry, J.B., J. Phys. C 9, 2721 (1976).CrossRefGoogle Scholar
13.Patrige, A., Tatlock, G.J., Leibsle, F.M., and Flipse, C.F.J., Phys. Rev. B 48, 8267 (1993).Google Scholar
14.Papageorgopoulos, C.A. and Kamaratos, M., Surf. Sci. 338, 77 (1995).CrossRefGoogle Scholar
15.Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., J. Appl. Phys. 69(9), 6569 (1991).CrossRefGoogle Scholar