Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T09:11:38.479Z Has data issue: false hasContentIssue false

Pulsed laser-ablation deposition of thin films of molybdenum silicide and its properties as a conducting barrier for ferroelectric random-access memory technology

Published online by Cambridge University Press:  31 January 2011

Sucharita Madhukar*
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
S. Aggarwal
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
A. M. Dhote
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
R. Ramesh
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
S. B. Samavedam
Affiliation:
APRDL, Motorola, Austin, Texas 78721
S. Choopun
Affiliation:
Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
R. P. Sharma
Affiliation:
Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
*
Get access

Abstract

We report on the feasibility of using molybdenum silicide as a conducting barrier for integration of ferroelectric lead zirconate titanate capacitors on Si. Thin films of MoSi2 were deposited by pulsed laser-ablation deposition (PLD). The silicide films showed a structural transition from amorphous to orthorhombic to tetragonal phase as the temperature of deposition was changed from room temperature to 900 °C. The four-probe resistivity and surface roughness of the films decreased with an increase in the deposition temperature and crystallinity of the phase. Ferroelectric (La, Sr)CoO3/Pb(Nb, Zr, Ti)O3/(La, Sr)CoO3 capacitors were grown on Si/poly Si/MoSi2, and Si/poly Si/MoSi2/Pt structures. Transmission electron microscopy (TEM) studies of the MoSi2/LSCO and MoSi2/Pt/LSCO heterostructures indicated the formation of a thin layer of SiO2. In the case of Pt/MoSi2, Pt reacts with the silicide and forms PtSi, consuming the entire platinum layer and, thus, makes it unsuitable as a composite barrier. Electrical testing of the LSCO/PNZT/LSCO capacitors through capacitive coupling showed desirable ferroelectric properties on these substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Ramesh, R., Lee, J., Sands, T., Keramidas, V. G., and Auciello, O., Appl. Phys. Lett. 64, 2511 (1994).CrossRefGoogle Scholar
3.Nakao, Y., Nakamura, T., Kamisawa, A., and Takasu, H., Proceedings of Sixth International Symposium on Integrated Ferroelectrics (Gordon and Breach Science Publishers, Monterey, CA, 1994), p. 23.Google Scholar
4.Ho, C.H., Prakash, S., Doerr, H. J., Deshpande, C. V., and Bunshah, R. F., Thin Solid Films 207, 294 (1992).CrossRefGoogle Scholar
5.Murarka, S.P., Silicides for VLSI Applications (Academic, Orlando, FL, 1983).Google Scholar
6.Pantel, R., Campidelli, Y., and Arnaud d'Avitaya, F., J. Electrochem. Soc. 131, 2426 (1984).CrossRefGoogle Scholar
7.Lee, H.S. and Wolga, G. J., J. Electrochem. Soc. 137 (2), 684 (1990).CrossRefGoogle Scholar
8.Perio, A., Torres, J., Bomchil, G., Arnaud d'Avitaya, F., and Pantel, R., Appl. Phys. Lett. 45 (8), 857 (1984).CrossRefGoogle Scholar
9.Chow, T.P., Bower, D.H., Van Art, R.L., and Katz, W., J. Electrochem. Soc. 130 (4), 952 (1983).CrossRefGoogle Scholar
10.Thorpe, T.P., Morrish, A. A., and Qadri, S. B., J. Vac. Sci. Technol. A 7 (3), 1279 (1989).CrossRefGoogle Scholar
11.West, G.W. and Beeson, K. W., J. Electrochem. Soc. 135 (7), 1752 (1988).CrossRefGoogle Scholar
12.Inoue, S., Toyokura, N., Nakamura, T., Maeda, M., and Takagi, M., J. Electrochem. Soc. 130 (7), 1603 (1983).CrossRefGoogle Scholar
13.Schrag, G.M. and Colgate, S. O., Thin Solid Films 199, 231 (1991).CrossRefGoogle Scholar
14.Glebovsky, V.G., Oganyan, R.A., Ermolov, S. N., Stinov, E. D., and Kolosova, E.V., Thin Solid Films 239, 192 (1994).CrossRefGoogle Scholar
15.Chrisey, D.B. and Hubler, G. H., Pulsed Laser Deposition of Thin Films (Wiley-Interscience, New York, 1994).Google Scholar
16.Norlund Christensen, A., J. Cryst. Growth 129, 266 (1993).CrossRefGoogle Scholar
17.Filonov, A.B., Tralle, I. E., Dorozkhin, N. N., Migas, D.B., Shaposhnikov, V.L., Petrov, G.V., Anishchik, V. M., and Borisenko, V. E., Phys. Status Solidi B 186, 209 (1994).CrossRefGoogle Scholar
18.Murarka, S.P., Reed, M.H., and Chang, C. C., J. Appl. Phys. 52, 7450 (1981).CrossRefGoogle Scholar
19.Dhote, A.M., Madhukar, S., Wei, W., Venkatesan, T., Ramesh, R., and Cotell, C. M., Appl. Phys. Lett. 68 (10), 1350 (1996).CrossRefGoogle Scholar
20.Wei, W., Dhote, A. M., Ramesh, R., and Sauvage, S., Int. Ferroelectrics 12, 1953 (1996).CrossRefGoogle Scholar
21.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).CrossRefGoogle Scholar