Article contents
Pulse laser processing of a SiC/Al-alloy metal matrix composite
Published online by Cambridge University Press: 08 February 2011
Abstract
The microstructural changes and the tensile behavior of laser processed A356-Al alloy matrix composites reinforced with 10 and 20 vol.% SiC particulates are characterized. The autogenous bead-on-plate welds were made using a pulsed CO2 laser operating at a peak power level of 3.2 kW. The pulse on-time was constant at 20 ms and the off-time was varied from 20 to 2 ms (duty cycles of 50–91%). The microstructure of the laser melted region was investigated by optical, scanning, and transmission electron microscopy, and x-ray microchemical analysis techniques. The extent of microstructural changes varied directly with duty cycle, i.e., being a maximum for the longest (91%) duty cycles. Pulsed laser processing produced partial to complete dissolution of SiC particles and sometimes resulted in the formation of aluminum carbide. The associated rapid cooling also produced a fine distribution of nonequilibrium complex precipitates. In addition, the laser energy modified the SiC surface both physically and chemically. The results of tensile tests indicated that the modified SiC and the distribution of fine nonequilibrium precipitates enhance the mechanical properties of the laser processed composites. Optimum changes in microstructure and mechanical properties were obtained in the composites processed with intermediate (67 and 74%) duty cycles; therefore pulsed processing appears to be a strong candidate for successful joining of these MMCs.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
- 40
- Cited by