Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T22:52:38.344Z Has data issue: false hasContentIssue false

Protective films of nanophase diamond deposited directly on zinc sulfide infrared optics

Published online by Cambridge University Press:  03 March 2011

F. Davanloo
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
T.J. Lee
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
H. Park
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
J.H. You
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
C.B. Collins
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
Get access

Abstract

Nanophase diamond films can be grown at room temperature with a laser plasma discharge source without the use of any catalyst. This technique produces films that adhere readily to materials for which there are important applications as protective coatings. Described here is a study of the bonding and properties realized with the direct deposition of nanophase diamond on the II-VI compound of zinc sulfide. It was shown that adhesion and mechanical properties of the films can be correlated with the amounts of defects and impurities in the zinc sulfide substrates. In all cases significant interfacial layers caused by the deep penetration of carbon atoms into the substrates were observed. Resistance to wear was estimated with a modified sand blaster, and results indicated that only 1 μm coating of nanophase diamond can increase lifetimes of the zinc sulfide samples by a factor better than 5. Protection afforded by the nanophase diamond under harsh environmental conditions of rain impacts was also described.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Collins, C. B., Davanloo, F., Juengerman, E. M., Osborn, W. R., and JandeT, D. R., Appl. Phys. Lett. 54, 216 (1989).CrossRefGoogle Scholar
2Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Appl. Phys. 67, 2081 (1990).CrossRefGoogle Scholar
3Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., and Collins, C. B., J. Mater. Res. 5, 2398 (1990).CrossRefGoogle Scholar
4Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., Park, H., and You, J. H., J. Appl. Phys. 69, 7862 (1991).CrossRefGoogle Scholar
5Davanloo, F., Lee, T. J., Jander, D. R., Park, H., You, J. H., and Collins, C. B., J. Appl. Phys. 71, 1446 (1992).CrossRefGoogle Scholar
6Collins, C. B., Davanloo, F., Lee, T. J., Jander, D. R., You, J. H., Park, H., and Pivin, J. C., J. Appl. Phys. 71, 3260 (1992).CrossRefGoogle Scholar
7Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., You, J. H., Park, H., Pivin, J. C., Glejbøl, K., and Thölén, A. R., J. Appl. Phys. 72, 239 (1992).CrossRefGoogle Scholar
8Stevefelt, J. and Collins, C. B., J. Phys. D 24, 2149 (1991).CrossRefGoogle Scholar
9Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., You, J. H., and Park, H., Diamond Films and Technology 2, 25 (1992).Google Scholar
10Collins, C. B., Davanloo, F., Lee, T. J., You, J. H., and Park, H., in Laser Ablation in Materials Processing–Fundamentals and Applications, edited by Braren, B., Dubowski, J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 547.Google Scholar
11Collins, C. B., Davanloo, F., Lee, T. J., Park, H., and You, J. H., J. Vac. Sci. Technol. (in press).Google Scholar
12Partlow, W. D., Witkowski, R. E., and McHugh, J. P., in Applications of Diamond and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A., Proc. ADC '91 Conf. (Elsevier, New York, 1991), p. 163.Google Scholar
13Mirtich, M. J., Nir, D., Swec, D., and Banks, B. A., J. Vac. Sci. Technol. A 4, 2680 (1986).CrossRefGoogle Scholar
14Swec, D. M., Mirtich, M. J., Nir, D., and Banks, B. A., J. Vac. Sci. Technol. A 4, 3030 (1986).CrossRefGoogle Scholar
15Savage, J. A., Infrared Optical Materials and Their Antireflection Coatings (Adam Hilger Ltd., Bristol, United Kingdom, 1985), pp. 100118.Google Scholar
16Lewis, K. L., Arthur, G. S., and Banyard, S. A., J. Cryst. Growth 66, 125 (1984).CrossRefGoogle Scholar
17Marquardt, C. L., Williams, R. T., and Nagel, D. J., in Plasma Synthesis and Etching of Electronic Materials, edited by Chang, R. P. H. and Abeles, B. (Mater. Res. Soc. Symp. Proc. 38, Pittsburgh, PA, 1985), p. 325.Google Scholar
18Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).CrossRefGoogle Scholar
19Lee, T. J., Park, H., You, J. H., Davanloo, F., and Collins, C. B., Surf. Coat. Technol. 54/55, 581 (1992).CrossRefGoogle Scholar
20Pivin, J. C. (private communication).Google Scholar
21Collins, C. B., Davanloo, F., Lee, T. J., You, J. H., and Park, H., Am. Ceram. Soc. Bull. 71, 1535 (1992).Google Scholar
22Carts, Y. A., Laser Focus World 28, 89 (1992).Google Scholar