Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:26:26.405Z Has data issue: false hasContentIssue false

The properties of W–C:H films deposited by reactive rf sputtering

Published online by Cambridge University Press:  31 January 2011

M. Wang
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, W-5170 Jülich 1, Postfach 1913, Germany
K. Schmidt
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, W-5170 Jülich 1, Postfach 1913, Germany
K. Reichelt
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, W-5170 Jülich 1, Postfach 1913, Germany
X. Jiang
Affiliation:
Fraunhofer-Institut für Schicht- und Oberflächentechnik (IST), Vogt-Kölln-Straβe 30, W-2000 Hamburg 54, Germany
H. Hübsch
Affiliation:
Fraunhofer-Institut für Schicht- und Oberflächentechnik (IST), Vogt-Kölln-Straβe 30, W-2000 Hamburg 54, Germany
H. Dimigen
Affiliation:
Fraunhofer-Institut für Schicht- und Oberflächentechnik (IST), Vogt-Kölln-Straβe 30, W-2000 Hamburg 54, Germany
Get access

Abstract

Tungsten-containing amorphous hydrogenated carbon (W–C:H) films were prepared on silicon substrates by reactive rf sputtering (13.56 MHz). Elastic recoil detection (ERD) and Rutherford backscattering (RBS) of MeV He+ ions have been performed to determine the hydrogen concentration and mass density of the films, respectively. The mechanical properties, i.e., the microhardness, Young's modulus, and the adhesion on substrates, have been studied by depth-sensing indentation equipment (nanoindenter) and a scratch tester with an acoustic emission (AE) detector, respectively. The electric conductivity of the films was also measured. The results show that these properties depend mainly on the tungsten concentration. X-ray diffraction suggests that the W–C:H films consist of an a–C: H polymeric matrix with WC1−x(β) particles embedded. With increasing tungsten concentration the films change from polymeric a–C:H dominant to crystalline WC1−x(β) dominant W–C:H, resulting in different film properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Enke, K., Dimigen, H., and Hübsch, H., Appl. Phys. Lett. 36, 281 (1980).CrossRefGoogle Scholar
2.Memming, R., Tolle, H. J., and Wierenga, P. E., Thin Solid Films 143, 31 (1986).Google Scholar
3.Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 66, 5805 (1989).CrossRefGoogle Scholar
4.Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 68, 1018 (1990).CrossRefGoogle Scholar
5.Dimigen, H. and Hübsch, H., Philips Technol. Rev. 41, 186 (1983/1984).Google Scholar
6.Dimigen, H., Hübsch, H., and Memming, R., Appl. Phys. Lett. 50, 1056 (1987).CrossRefGoogle Scholar
7.Klages, C. P. and Memming, R., Mater. Sci. Forum 52 & 53, 609 (1989).Google Scholar
8.Wang, M., Schmidt, K., Reichelt, K., Dimigen, H., and Hübsch, H., Surf. Coat. Technol. 47, 691 (1991).CrossRefGoogle Scholar
9.Wang, M., Schmidt, K., Reichelt, K., Dimigen, H., and Hübsch, H., J. Mater. Res. 7, 667 (1992).Google Scholar
10.Wang, M., Jiang, X., and Stritzker, B., Thin Solid Films 197, 57 (1991).Google Scholar
11.Duyn, W. V. and Lochem, B. V., Thin Solid Films 181, 497 (1989).Google Scholar
12.Schmidt, K., Reichelt, K., Stritzker, B. and Zou, J., Fresenius Z. Anal. Chem. 333, 326 (1989).Google Scholar
13.Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1989).Google Scholar
14.Bierfeld, H. J., private communication.Google Scholar
15.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
16.Oliver, W. C., MRS Bull. XI, 15 (1986).Google Scholar
17.Sneddon, I. N., Int. J. Engr. Sci. 3, 47 (1965).Google Scholar
18.Jiang, X., Zou, J. W., Reichelt, K., and Grünberg, P., J. Appl. Phys. 66, 4729 (1989).Google Scholar
19.Jiang, X., Goranchev, B., Schmidt, K., Grünberg, P., and Reichelt, K., J. Appl. Phys. 67, 6722 (1989).Google Scholar
20.Bayer, W., unpublished.Google Scholar
21.Wild, C. and Koidl, P., Appl. Phys. Lett. 51, 1506 (1987).Google Scholar
22.Jiang, X., Wang, M., Schmidt, K., Dunlop, E., Haupt, J., and Gissler, W., J. Appl. Phys. 69, 3053 (1991).Google Scholar
23.Robertson, J., “Diamond and diamondlike Carbon Films,” NATO Advanced Study Institute, Pisa, Italy (1990), edited by Angus, J. C. (Plenum Press, New York, 1991).Google Scholar
24.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 157, 233 (1989).Google Scholar
25.Köberle, H. and Memming, R., in Amorphous Hydrogenated Carbon Films, edited by Koidl, P. and Oelhafen, P. (E-MRS Meeting R-17, Les Editions de Physique, Paris, 1987), p. 485.Google Scholar
26.Klages, C-P., Köberle, H., Bauer, M., and Memming, R., Proc. 1st Int. Symp. on Diamond and Diamond-like Films, Los Angeles, CA, May 712, 1989.Google Scholar