Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:28:08.938Z Has data issue: false hasContentIssue false

Properties of polyimide shells made using vapor phase deposition

Published online by Cambridge University Press:  31 January 2011

E. L. Alfonso
Affiliation:
Laboratory For Laser Energetics, University of Rochester, Rochester, New York 14623-1299
S. H. Chen
Affiliation:
Laboratory For Laser Energetics, University of Rochester, Rochester, New York 14623-1299
R. Q. Gram
Affiliation:
Laboratory For Laser Energetics, University of Rochester, Rochester, New York 14623-1299
D. R. Harding
Affiliation:
Laboratory For Laser Energetics, University of Rochester, Rochester, New York 14623-1299
Get access

Abstract

Hollow polyimide shells, to be used in inertial confinement fusion experiments, were fabricated by codepositing monomer precursors onto spherical mandrels. Polyimide shells with 700 to 950 μm diameters and 4 to 13 μm wall thicknesses were produced. The shell wall shrunk 20–30% due to imidization. Burst and buckle pressure tests on these shells yielded estimated mechanical strength properties: ∼ 15 GPa elastic modulus and ∼ 300 MPa tensile strength. The permeability of D2 through polyamic acid at 298 K was 7.4 × 10−17 mol · m/m2 · Pa · s and increased to 6.4 × 10−16 mol · m/m2 · Pa · s upon curing the shell to 150 °C. The permeability of D2 at 298 K through vapor-deposited polyimide flat films was 240 times greater than through polyamic acid.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sanchez, J. J. and Letts, S. A., Fusion Technol. 31, 491 (1997).CrossRefGoogle Scholar
2.Takekoshi, T., in Polymides: Fundamentals and Applications, edited by Ghosh, M. K. and Mittal, K. L., Plastics Engineering, Vol. 36 (Marcel Dekker, New York, 1996), p. 7.Google Scholar
3.Salem, J. R., Sequeda, F. O., Duran, J., Lee, W. Y., and Yang, R. M., J. Vac. Sci. Technol. A 4, 369 (1986).CrossRefGoogle Scholar
4.Iijima, M., Takahashi, Y., Inagawa, K., and Itoh, A.,J. Vac. Sci. Jpn. 28, 437 (1985).CrossRefGoogle Scholar
5.Letts, S. A., Fearon, E. M., Buckley, S. R., Saculla, M. D., Allison, L. M., and Cook, R.Fusion Technol. 28, 1797 (1995).CrossRefGoogle Scholar
6.Letts, S. A., Myers, D. W., and Witt, L. A., J. Vac. Sci. Technol. 19, 739 (1981).CrossRefGoogle Scholar
7.Alfonso, E. L., Chen, S-H., Wittman, M. D., Papernov, S., and Harding, D., Polymer 38, 1639 (1997).CrossRefGoogle Scholar
8.McQuillan, B., presented at the ICF Target Fabrication Meeting, FY97 Mid-Year Review, San Diego, CA, 23–25 April 1997.Google Scholar
9.Hutchings, C. W. and Grunze, M., Rev. Sci. Instrum. 66, 3943 (1995).CrossRefGoogle Scholar
10.Strunskus, T. and Grunze, M., in Polyimides: Fundamentals and Applications, edited by Ghosh, M. K. and Mittal, K. L., Plastics Engineering, Vol. 36 (Marcel Dekker, New York, 1996), p. 187.Google Scholar
11.Bonino, M., Gram, R. Q., Harding, D., Noyes, S., Soures, J., and Wittman, M., presented at the Eleventh Target Fabrication Specialists’ Meeting, Orcas Island, WA, 9–12 September 1996.Google Scholar
12.Annual Book of ASTM Standards, ASTM Designation: D 1434–82 (Reapproved 1992) (1994), Vol. 15.09, pp. 204215.Google Scholar
13.Stoney, G. G., Proc. R. Soc. London A 82, 172 (1909).Google Scholar
14.Jou, J-H., Cheng, C-L., Jou, E. C-Y., and Yang, A. C-M., J. Polym. Sci. Polym. Phys. Ed. 34, 2239 (1996).3.0.CO;2-6>CrossRefGoogle Scholar
15.Langsam, M., in Polyimides: Fundamentals and Applications, edited by Ghosh, M. K. and Mittal, K. L., Plastics Engineering, Vol. 36 (Marcel Dekker, New York, 1996), p. 697.Google Scholar
16.Ikeda, R. M., Angelo, R. J., Boettcher, F. P., Blomberg, R. N., and Samuels, M. R., J. Appl. Polym. Sci. 25, 1391 (1980).CrossRefGoogle Scholar
17.Hsu, T. H., Structural Engineering & Applied Mechanics Data Handbook, Vol. 4: Shells (Gulf Publishing Company, Houston, TX, 1991), p. 349.Google Scholar