Article contents
Properties of BaBi2Ta2O9 thin films prepared by chemical solution deposition technique for dynamic random-access memory applications
Published online by Cambridge University Press: 31 January 2011
Abstract
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650 °C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700 °C for 60 min. The leakage current density of the films was lower than 10−9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
REFERENCES
- 11
- Cited by