Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:04:35.258Z Has data issue: false hasContentIssue false

Processing and characterization of 〈001〉-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 ceramics

Published online by Cambridge University Press:  29 May 2017

Cihangir Duran*
Affiliation:
Metallurgical and Materials Engineering Department, Ankara Yıldırım Beyazıt University, Ankara 06010, Turkey
Salih Cengiz
Affiliation:
Metallurgical and Materials Engineering Department, Ankara Yıldırım Beyazıt University, Ankara 06010, Turkey
Nazım Ecebaş
Affiliation:
Metallurgical and Materials Engineering Department, Ankara Yıldırım Beyazıt University, Ankara 06010, Turkey
Sinan Dursun
Affiliation:
Materials Science and Engineering Department, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
Erdem Akça
Affiliation:
Metallurgical and Materials Engineering Department, Cumhuriyet University, Sivas 58140, Turkey
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

0.62[0.75(Pb(Mg1/3Nb2/3)O3)–0.25(Pb(Yb1/2Nb1/2)O3)]–0.38(PbTiO3) ceramics were successfully textured in [001] via the template grain growth method using 1–7 vol% platelike BaTiO3 (BT) templated (the Lotgering factor of 0.91 at 5 vol% BT). Dielectric spectra indicated a normal ferroelectric behavior without any frequency dispersion and no low-temperature phase transition. The chemically stable BT phase within the matrix gave rise to a composite effect and its relatively inferior properties affected the dielectric and electromechanical properties. The lower T C of the BT decreased the Curie temperature from 226 to 213 °C (with a depolarization temperature of 204 °C). Significantly higher levels of strain (0.33%), narrower hysteresis level (7.7%), higher piezoelectric strain coefficient (660 pm/V), and low-field (<5 kV/cm) piezoelectric strain coefficient (1340 pm/V) at 50 kV/cm were achieved at 5 vol% BT addition. These results are very promising for the fabrication of high performance transducer and actuator applications without severe temperature limitations.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Edward M. Sabolsky

References

REFERENCES

Messing, G.L., Sabolsky, E.M., Trolier-McKinstry, S., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., and Seabaugh, M.: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 49 (2004).CrossRefGoogle Scholar
Rehrig, P.W., Park, S.E., Trolier-McKinstry, S., Messing, G.L., Jones, B., and Shrout, T.R.: Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth. J. Appl. Phys. 86, 1657 (1999).CrossRefGoogle Scholar
Duran, C., Trolier-McKinstry, S., and Messing, G.L.: Fabrication and electrical properties of textured Sr0.53Ba0.47Nb2O6 ceramics by templated grain growth. J. Am. Ceram. Soc. 83, 2203 (2000).Google Scholar
Sabolsky, E.M., James, A.R., Kwon, S., Trolier-McKinstry, S., and Messing, G.L.: Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 78, 2551 (2001).Google Scholar
Sabolsky, E.M., Trolier-McKinstry, S., and Messing, G.L.: Dielectric and piezoelectric properties of 〈001〉 fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. J. Appl. Phys. 93, 4072 (2003).CrossRefGoogle Scholar
Zhou, J.E., Yan, Y., Priya, S., and Wang, Y.U.: Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites. J. Appl. Phys. 121, 024101 (2017).Google Scholar
Richter, T., Denneler, S., Schuh, C., Suvaci, E., and Moos, R.: Textured PMN–PT and PMN–PZT. J. Am. Ceram. Soc. 91, 929 (2008).CrossRefGoogle Scholar
Kwon, S., Sabolsky, E.M., Messing, G.L., and Trolier-McKinstry, S.: High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88, 312 (2005).CrossRefGoogle Scholar
Andreeta, E.R.M., dos Santos, H.F.L., Andreeta, M.R.B., Lente, M.H., Garcia, D., Hernandes, A.C., and Eiras, J.A.: Anisotropy on SrTiO3 templated textured PMN–PT monolithic ceramics. J. Eur. Ceram. Soc. 27, 2463 (2007).Google Scholar
He, C., Li, X., Wang, Z., Long, X., Mao, S., and Ye, Z-G.: Preparation and characterization of new Pb(Yb1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary piezo-/ferroelectric crystals. Chem. Mater. 22, 5588 (2010).CrossRefGoogle Scholar
Chang, Y., Sun, Y., Wu, J., Wang, X., Zhang, S., Yang, B., Messing, G.L., and Cao, W.: Formation mechanism of highly [001]c textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity. J. Eur. Ceram. Soc. 36, 1973 (2016).Google Scholar
Akça, E., Yılmaz, H., and Duran, C.: Processing and electrical properties in lead-based (Pb(Mg1/3Nb2/3)O3, Pb(Yb1/2Nb1/2)O3, PbTiO3) systems. J. Am. Ceram. Soc. 93, 28 (2010).Google Scholar
Akça, E. and Duran, C.: Fabrication and characterizations of (Pb(Mg1/3Nb2/3)O3, Pb(Yb1/2 Nb1/2)O3, PbTiO3) ternary system ceramics. Ceram. Int. 37, 2135 (2011).CrossRefGoogle Scholar
Duran, C., Dursun, S., and Akça, E.: High strain, 〈001〉-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics. Scr. Mater. 113, 14 (2016).Google Scholar
Liu, D., Yan, Y., and Zhou, H.: Synthesis of micron-scale platelet BaTiO3 . J. Am. Ceram. Soc. 90, 1323 (2007).CrossRefGoogle Scholar
Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
Suvaci, E. and Messing, G.L.: Critical factors in the templated grain growth of textured reaction-bonded alumina. J. Am. Ceram. Soc. 83, 2041 (2000).CrossRefGoogle Scholar
Seabaugh, M.M., Kerscht, I.H., and Messing, G.L.: Texture development by templated grain growth in liquid-phase sintered α-alumina. J. Am. Ceram. Soc. 80, 1181 (1997).Google Scholar
Duran, C., Trolier-McKinstry, S., and Messing, G.L.: Processing and electrical properties of 0.5Pb(Yb1/2Nb1/2)O3–0.5PbTiO3 ceramics. J. Electroceram. 10, 47 (2003).CrossRefGoogle Scholar
Brosnan, K.H., Messing, G.L., Meyer, R.J. Jr., and Vaudin, M.D.: Texture measurements in 〈001〉 fiber-oriented PMN–PT. J. Am. Ceram. Soc. 89, 1965 (2006).Google Scholar
German, R.M., Suri, P., and Park, S.J.: Review liquid phase sintering. J. Mater. Sci. 44, 1 (2009).CrossRefGoogle Scholar
Xie, Y., Yin, S., Hashimoto, T., Tokano, Y., Sasaki, A., and Sato, T.: Low temperature synthesis of tetragonal BaTiO3 by a novel composite-hydroxide-mediated approach and its dielectric properties. J. Eur. Ceram. Soc. 30, 699 (2010).Google Scholar
Sehirlioglu, A., Sayir, A., and Dynys, F.: High temperature properties of BiScO3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 106, 014102 (2009).Google Scholar
Chu, R., Xu, Z., Li, G., Zeng, H., Yu, H., Luo, H., and Yin, Q.: Ultrahigh piezoelectric response perpendicular to special cleavage plane in BaTiO3 single crystals. Appl. Phys. Lett. 86, 012905 (2005).Google Scholar
Pertsev, N.A., Zembilgotov, A.G., and Waser, R.: Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculating by the method of effective piezoelectric medium. J. Appl. Phys. 84, 1524 (1998).Google Scholar
Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., and Priya, S.: Giant piezoelectric voltage coefficient in grain oriented modified-PbTiO3 material. Nat. Commun. 7, 13089 (2016).CrossRefGoogle ScholarPubMed