Published online by Cambridge University Press: 15 July 2019
Glasses were prepared in systems based on two stoichiometric sulfides that were selected from Ga2S3, GeS2, and Sb2S3, with the incorporation of excess sulfur and CsCl. We investigated the fundamental properties, including glass transition, density, and optical absorption, and their variations with the incorporation of excess sulfur and CsCl into the pseudo two-component sulfide glasses. The incorporation of CsCl into the GeS2–Sb2S3 glasses shifted the absorption edge at the short-wavelength side to the long-wavelength direction, particularly for glasses with more amount of GeS2 than SbS3/2. In both cases of CsCl incorporation into the Ga2S3–GeS2 glass and Ga2S3–Sb2S3 glass systems, the absorption edges shifted to the short-wavelength direction regardless of the compositions. Ag photodoping behaviors were investigated for the bulk sulfide glasses with excess sulfur and CsCl. The results are discussed based on the diffusion of silver in the glass network that is modified by the incorporation.