Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T21:11:49.341Z Has data issue: false hasContentIssue false

Preparation of Zr60Ni21Al19 bulk metallic glass and compression behavior under high pressure

Published online by Cambridge University Press:  31 January 2011

G. Li*
Affiliation:
National Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
Q. Jing
Affiliation:
National Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
T. Xu
Affiliation:
National Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
L. Huang
Affiliation:
National Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
R.P. Liu
Affiliation:
National Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
J. Liu
Affiliation:
Beijing Synchrotron Radiation Laboratory (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Zr60Ni21Al19 metallic glass rod, with a diameter of 8 mm, is manufactured by copper mold casting. The as-cast bulk metallic glass (BMG) exhibits nearly zero plastic strain, but a high strength of 1.88 GPa. The compression behavior of this new zirconium-base ternary BMG under high pressure at ambient temperature in a diamond-anvil cell instrument has been unraveled using energy dispersive x-ray diffraction with a synchrotron radiation source. The investigation shows that the amorphous structure of Zr60Ni21Al19 is stable under pressures up to 24.5 GPa at room temperature. According to the Bridgman equation of state, the bulk modulus B0 = 96 GPa has been obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peker, A.Johnson, W.L.: Highly processing metallic glass Zr41.5Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
2Inoue, A., Zhang, T.Masumoto, T.: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 31(3), 177 1990CrossRefGoogle Scholar
3Wang, W.H., Wei, Q.Friedrich, S.: Microstructure and decomposition and crystallization in metallic glass ZrTiCuNiBe alloy. Phys. Rev. B 57, 8211 1998CrossRefGoogle Scholar
4Wang, W.H., Bao, Z.X., Liu, C.X., Zhao, D.Q.Eckert, J.: Equation of state of ZrTiCuNiBe bulk amorphous alloy. Phys. Rev. B 61, 3166 2000CrossRefGoogle Scholar
5Li, G., Wang, Y.Q., Gao, Y.P., Zhang, R.J., Zhan, Z.J., Sun, L.L., Zhang, J.Wang, W.K.: Wear behaviors of bulk Zr41Ti12.5Cu14Ni10Be22.5 metallic glasses. J. Mater. Res. 17, 1877 2002CrossRefGoogle Scholar
6Tang, X.P., Geyer, U.Busch, R.: Diffusion mechanisms in metallic supercooled liquids and glasses. Nature 402, 160 1999Google Scholar
7Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L. Jr., Horton, J.A. Jr., Carmichael, C.A.Wright, J.L.: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 2002CrossRefGoogle Scholar
8Flores, K.M.Dauskardt, R.H.: Enhanced toughness due to stable crack tip damage zones in bulk metallic glass. Scr. Mater. 41, 937 1999CrossRefGoogle Scholar
9Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
10Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
11Bukowinski, M.S.T.Knopoff, L.: Physics and chemistry of iron and potassium at lower-mantle and core pressure in Geophysics: High-Pressure Research edited by M.H. Manghnani and S. Akimoto Academic Press New York 1977 367CrossRefGoogle Scholar
12Ruitenberg, G., Hey, P.D., Sommer, F.Sietsma, J.: Pressure-induced structural relaxation in amorphous Pd40Ni40P20: The formation volume for diffusion defects. Phys. Rev. Lett. 79, 4830 1997CrossRefGoogle Scholar
13Chen, H.S.: Glassy metals. Rep. Prog. Phys. 43, 353 1980CrossRefGoogle Scholar
14Greer, A.L.: Atomic transport and structural relaxation in metallic glasses. J. Non-Cryst. Solids 61–62, 737 1984CrossRefGoogle Scholar
15Morishita, T.: High density amorphous form and polyamorphic transformations of silicon. Phys. Rev. Lett. 93, 055503 2004CrossRefGoogle ScholarPubMed
16Wang, W.H., Wen, P., Wang, L.M., Zhang, Y., Pan, M.X., Zhao, D.Q.Wang, R.J.: Equation of state of bulk metallic glasses studied by an ultrasonic method. Appl. Phys. Lett. 79, 3947 2001CrossRefGoogle Scholar
17Bridgman, P.W.: The Physics of High Pressure Bell & Sons London 1958Google Scholar
18Sheng, H.W., Liu, H.Z., Cheng, Y.Q., Wen, J., Lee, P.L., Luo, W.K., Shastri, S.D.Ma, E.: Polyamorphism in a metallic glass. Nat. Mater. 6, 192 2007CrossRefGoogle Scholar
19Meade, C., Hemley, R.J.Mao, H.K.: High-pressure x-ray-diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387 1992CrossRefGoogle ScholarPubMed
20Sen, S., Gaudio, S., Aitken, B.G.Lesher, C.E.: A pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature. Phys. Rev. Lett. 97, 025504 2006CrossRefGoogle Scholar
21Cohen, M.H.Turnbull, D.J.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 1959CrossRefGoogle Scholar
22Marc, H., Spaepen, F.Feuerbacher, M.: Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 97, 033506 2005Google Scholar