Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T13:07:29.569Z Has data issue: false hasContentIssue false

Preparation of wurtzitic AlN thin films with a novel crystallographic alignment on MgO substrates by molecular-beam epitaxy

Published online by Cambridge University Press:  31 January 2011

J. R. Heffelfinger
Affiliation:
Materials and Engineering Sciences Center, Sandia National Laboratories, P.O. Box 969, Livermore, California 94551
D. L. Medlin
Affiliation:
Materials and Engineering Sciences Center, Sandia National Laboratories, P.O. Box 969, Livermore, California 94551
K. F. McCarty
Affiliation:
Materials and Engineering Sciences Center, Sandia National Laboratories, P.O. Box 969, Livermore, California 94551
Get access

Extract

Thin films of wurtzitic AlN have been deposited by molecular-beam epitaxy onto (001) oriented MgO substrates. The films are epitactic and align with the and the , as evidenced by transmission electron microscopy. This configuration, which matches a close-packed direction of the film and substrate, allows for growth of two symmetrically equivalent orientation variants of the AlN film. These variants are distinguished by a 90° rotation about the direction that is normal to the substrate surface. Each variant also aligns the and the to within 5° of being parallel to the (200)MgO. The microstructure of the AlN films and origins of these novel alignments are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Madan, A., Kim, I. W., Cheng, S. C., Yashar, P., Dravid, V. P., and Barnett, S. A., Phys. Rev. Lett. 78, 1743 (1997).CrossRefGoogle Scholar
2.Lin, W. T., Meng, L. C., Chen, G. J., and Liu, H. S., Appl. Phys. Lett. 66, 2066 (1995).CrossRefGoogle Scholar
3.Powell, R. C., Lee, N. E., Kim, Y. W., and Greene, J. E., J. Appl. Phys. 73, 189 (1993).CrossRefGoogle Scholar
4.Watanabe, S. and Nozoye, H., Appl. Surf. Sci. 113–114, 618 (1997).CrossRefGoogle Scholar
5.Li, Y., Langreth, D. C., and Pederson, M. R., Phys. Rev. B 55, 16 456 (1997).CrossRefGoogle Scholar
6.Kohn, W. and Sham, L. J., Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
7.Christensen, N. E. and Gorczyca, I., Phys. Rev. B 50, 4397 (1994).CrossRefGoogle Scholar
8.Yoshida, S., Misawa, S., Fujii, Y., Takada, S., Hayakawa, H., Gonda, S., and Itoh, A., J. Vac. Sci. Technol. 16, 990 (1979).CrossRefGoogle Scholar
9.Morita, M., Uesugi, N., Isogai, S., Tsubouchi, K., and Mikoshiba, N., Jpn. J. Appl. Phys. 20, 17 (1981).CrossRefGoogle Scholar
10.Miyauchi, M., Ishikawa, Y., and Shibata, N., Jpn. J. Appl. Phys. 31, L1714 (1992).CrossRefGoogle Scholar
11.Rowland, L. B., Kern, R. S., Tanaka, S., and Davis, R. F., J. Mater. Res. 8, 2310 (1993).CrossRefGoogle Scholar
12.Huffman, G. L., Fahnline, D. E., Messier, R., and Pilone, L. J., J. Vac. Sci. Technol. A 7, 2252 (1989).CrossRefGoogle Scholar
13.Bienk, E. J., Jensen, H., Pedersen, G. N., and Sorensen, G., Thin Solid Films 230, 121 (1993).CrossRefGoogle Scholar
14.Okano, H., Takahashi, Y., Tanaka, T., Shibata, K., and Nakano, S., Jpn. J. Appl. Phys. 31, 3446 (1992).CrossRefGoogle Scholar
15.Rodriques-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J. M., Messier, R., and Pilione, L. J., J. Mater. Res. 12, 1689 (1997).CrossRefGoogle Scholar
16.Rodriques-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J. M., Messier, R., and Pilione, L. J., J. Mater. Res. 12, 1850 (1997).CrossRefGoogle Scholar