Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T11:46:02.109Z Has data issue: false hasContentIssue false

Preparation of the 110 K single phase superconductor Bi1.6Pb0.4Ca2Sr2Cu3Ox using a precursor matrix reaction method

Published online by Cambridge University Press:  31 January 2011

Z. Wang
Affiliation:
Department of Physics, University of Toronto, Toronto, Ontario, Canada
B.W. Statt
Affiliation:
Department of Physics, University of Toronto, Toronto, Ontario, Canada
M.J.G. Lee
Affiliation:
Department of Physics and Scarborough College, University of Toronto, Toronto, Ontario, Canada
S. Bagheri
Affiliation:
Department of Metallurgy and Materials Science, University of Toronto, Toronto, Ontario, Canada
J. Rutter
Affiliation:
Department of Metallurgy and Materials Science, University of Toronto, Toronto, Ontario, Canada
Get access

Abstract

Nearly single phase sintered samples of the lead-doped high-Tc oxide superconductor of nominal composition Bi1.6Pb0.4Ca2Sr2Cu3Ox have been prepared using a precursor matrix reaction method. The experimental results indicate that in samples annealed under optimum conditions (200 h at 855 °C) the volume fraction of impurity phases is only about 3%. If the optimum annealing time is exceeded, the high-Tc phase begins to decompose into the low-Tc phase and nonsuperconducting phases. It is found that the precursor reaction matrix method minimizes loss of lead during processing.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
3.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B Condense Matter 68, 421 (1987).CrossRefGoogle Scholar
4.Shi, D., Tang, Ming, Vandervoort, K., and Claus, H., Phys. Rev. B 39, 9091 (1989).CrossRefGoogle Scholar
5.Green, S. M., Mei, Yu, Manzi, A. E., Luo, H. L., Ramesh, R., and Thomas, G., J. Appl. Phys. 66, 728 (1989).CrossRefGoogle Scholar
6.Yamada, Y. and Murase, S., Jpn. J. Appl. Phys. 27, L996 (1988).Google Scholar
7.Sumiyama, A., Yoshitomi, T., Endo, H., Tsuchiya, J., Kijima, N., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L542 (1988).CrossRefGoogle Scholar
8.Kijima, N., Endo, H., Tsuchiya, J., Sumiyana, A., Mizuno, M., and Oguri, Y., Jpn. J. Appl. Phys. 27, L821 (1988).CrossRefGoogle Scholar
9.Hatano, T., Aota, K., Ikede, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
10.Statt, B. W., Wang, Z., Lee, M. J. G., Yakhmi, J. V., De Camargo, P. C., Major, J. F., and Rutter, J. W., Physica C 156, 251 (1988).CrossRefGoogle Scholar
11.Maeda, A., Noda, K., Uchinokura, K., and Tanaka, S., Jpn. J. Appl. Phys. 28, L576 (1989).CrossRefGoogle Scholar
12.Sastry, P. V. P. S. S., Gopalakrishnan, I. K., Sequeira, A., Rajagopal, H., Gangadharan, K., Phatak, G. M., and Iyer, R. M., Physica C 156, 230 (1988).CrossRefGoogle Scholar
13.Sastry, P. V. P. S. S., Gopalakrishnan, I. K., Yakhmi, J. V., and Iyer, R. M., Physica C 157, 491 (1989).CrossRefGoogle Scholar
14.Siegrist, T., Zahurak, S. M., Murphy, D. W., and Roth, R. S., Nature 334, 231 (1988).CrossRefGoogle Scholar
15.Statt, B. W., Wang, Z., Bagheri, S., and Rutter, J. (to be published).Google Scholar