Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T11:25:54.063Z Has data issue: false hasContentIssue false

Preparation of textured alumina films by the sol-gel route

Published online by Cambridge University Press:  03 March 2011

J. Campaniello
Affiliation:
Laboratoire de Chimie des Solides, URA 446-CNRS, Bât. 414, Université Paris Sud, 91405 Orsay Cedex, France
P. Berthet*
Affiliation:
Laboratoire de Chimie des Solides, URA 446-CNRS, Bât. 414, Université Paris Sud, 91405 Orsay Cedex, France
F. d'Yvoire
Affiliation:
Laboratoire de Chimie des Solides, URA 446-CNRS, Bât. 414, Université Paris Sud, 91405 Orsay Cedex, France
A. Revcolevschi
Affiliation:
Laboratoire de Chimie des Solides, URA 446-CNRS, Bât. 414, Université Paris Sud, 91405 Orsay Cedex, France
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Alumina films were fabricated by the sol-gel route under various preparation conditions. The peptization rate and the structure of colloidal particles depend on these conditions. In particular, the peptization of a dried boehmite precipitate prepared from aluminum alkoxide was achieved within a few seconds without heating. The resulting sol is made of highly dispersed crystallites; this allows the formation of well-textured xerogel films as evidenced by the Weissenberg x-ray method.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Leenaars, A. F. M., Keizer, K., and Burgraaf, A. J., J. Mater. Sci. 19, 1077 (1984).Google Scholar
2Yoldas, B. E., Ceram. Bull. 54, 289 (1975).Google Scholar
3Yoldas, B. E., J. Mater. Sci. 10, 1856 (1975).CrossRefGoogle Scholar
4Song, K. C. and Chung, I. J., J. Non-Cryst. Solids 108, 37 (1989).CrossRefGoogle Scholar
5Chane-Ching, J.Y. and Klein, L.C., J. Am. Ceram. Soc. 71, 86 (1988).Google Scholar
6Rama Rao, G. V., Venkadesan, S., and Saraswati, V., J. Non-Cryst. Solids 111, 103 (1989).CrossRefGoogle Scholar
7Wolfram, S. M., J. Mater. Sci. Lett. 6, 706 (1987).CrossRefGoogle Scholar
8Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 68, 500 (1985).Google Scholar
9Horn, D. S. and Messing, G. L., J. Am. Ceram. Soc. 72, 1719 (1989).CrossRefGoogle Scholar
10Pach, L., Roy, R., and Komarneni, S., J. Mater. Res. 5, 278 (1990).Google Scholar
11Ewing, F. J., J. Chem. Phys. 3, 420 (1935).Google Scholar
12JCPDS data card 21–1307 (1971).Google Scholar
13Baker, B. R. and Pearson, R. M., J. Catal. 33, 265 (1974).Google Scholar
14Overbeek, J. T., J. Colloid Interface Sci. 58, 408 (1977).Google Scholar
15Milligan, W. O. and Weiser, H. B., J. Phys. and Colloid Chem. 55, 490 (1951).Google Scholar
16Pierre, A. C. and Uhlmann, D. R., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 32, Elsevier Science Publishing, New York, 1984), p. 119.Google Scholar
17Pierre, A. C. and Uhlmann, D. R., J. Am. Ceram. Soc. 70, 28 (1987).Google Scholar
18Scherer, G. W., J. Am. Ceram. Soc. 73, 3 (1990).CrossRefGoogle Scholar