Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T21:07:57.313Z Has data issue: false hasContentIssue false

Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions

Published online by Cambridge University Press:  01 April 2005

M.T. López-López
Affiliation:
Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
J. de Vicente
Affiliation:
Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
G. Bossis
Affiliation:
Laboratoire de Physique de la Matière Condensée, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
F. González-Caballero
Affiliation:
Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
J.D.G. Durán*
Affiliation:
Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

The high magneto-viscous response of magnetorheological fluids (MRFs) comes from the large size (≈1 μm) of the magnetic particles dispersed in the carrier liquid. Unfortunately, in the absence of a magnetic field, this large size constitutes the origin of some problems facing the technological applications of MRFs. These problems are (i) the instability of the suspensions caused by the fast settling of the high density magnetic particles used, and (ii) the poor redispersibility due to an irreversible aggregation. In this work, we used an electromagnetic induction method to study the stability of MRFs containing micron-sized iron particles dispersed in ferrofluids composed by oleate-covered magnetite nanoparticles dispersed in kerosene. Interestingly, we demonstrated that the sedimentation rate in iron/ferrofluid suspensions can be significantly lower than in iron/kerosene MRFs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Phulé, P.P. and Ginder, J.M.: The materials science of field-responsive fluids. MRS Bull. 23(8), 19 (1998).CrossRefGoogle Scholar
2. Charles, S.W.: The preparation of magnetic fluids, in Ferrofluids, edited by Odenbach, S. (Springer, Bremen, Germany, 2002), pp. 69.Google Scholar
3. Rosensweig, R.E.: Magnetic fluids. Sci. Am. 247, 136 (1982).CrossRefGoogle Scholar
4. Rosensweig, R.E.: Magnetic fluids. Ann. Rev. Fluid Mech. 19, 437 (1987).CrossRefGoogle Scholar
5. Rosensweig, R.E.: An introduction to ferrohydrodynamics. Chem. Eng. Commun. 67, 1 (1988).CrossRefGoogle Scholar
6. Odenbach, S.: Ferrofluids—Magnetically controlled suspensions. Colloid Surface A 217, 171 (2003).CrossRefGoogle Scholar
7. Ginder, J.M.: Behavior of magnetorheological fluids. MRS Bull. 23, 26 (1998).10.1557/S0883769400030785CrossRefGoogle Scholar
8. Bossis, G., Volkova, O., Lacis, S. and Meunier, A.: Magnetorheology: fluids, structures, and rheology, in Ferrofluids, edited by Odenbach, S. (Springer, Bremen, Germany, 2002), p. 202.CrossRefGoogle Scholar
9. Ginder, J.M.: Rheology controlled by magnetic fields. Encyclopedia of Applied Physics 16, 487 (1996).Google Scholar
10. de Vicente, J., López-López, M.T., González-Caballero, F. and Durán, J.D.G.: Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J. Rheol. 47, 1093 (2003).CrossRefGoogle Scholar
11. Volkova, O., Bossis, G., Guyot, M., Bashtovoi, V. and Reks, A.: Magnetorheology of magnetic holes compared to magnetic particles. J. Rheol. 44, 91 (2000).CrossRefGoogle Scholar
12. Dang, A., Ooi, L., Fales, J. and Strove, P.: Yield stress measurements of magnetorheological fluids in tubes. Ind. Eng. Chem. Res. 39, 2269 (2000).CrossRefGoogle Scholar
13. van Ewijk, G.A., Vroege, G.J. and Philipse, A.P.: Convenient preparation methods for magnetic colloids. J. Magn. Magn. Mater. 201, 31 (1999).CrossRefGoogle Scholar
14. Chen, Z.Y., Tang, X., Zhang, G.C., Jin, Y., Ni, W., and Zhu, Y.R.: In Electro-Rheological Fluids, Magneto-Rheological Suspensions and Their Applications, edited by Nakano, M. and Koyama, K. (Proc. 6th Int. Conference on Electro-rheological Fluids, Magneto-rheological, Suspensions, and their Applications, Singapore, 1998), p. 486.Google Scholar
15. Chin, B.D., Park, J.H., Kwon, M.H. and Park, O.O.: Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol. Acta 40, 211 (2001).CrossRefGoogle Scholar
16. Rankin, P.J., Horvath, A.T. and Klingenberg, D.J.: Magnetorheology in viscoplastic media. Rheol. Acta 38, 471 (1999).CrossRefGoogle Scholar
17. Park, J.H., Chin, B.D. and Park, O.O.: Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349 (2001).CrossRefGoogle Scholar
18. Phulé, P.P., Mihalcin, M.T. and Gene, S.: The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids. J. Mater. Res. 14, 3037 (1999).CrossRefGoogle Scholar
19. Shimada, K., Akagami, Y., Fujita, T., Miyazaki, T., Kamiyama, S. and Shibayama, A.: Characteristics of magnetic compound fluid (MCF) in a rotating rheometer. J. Magn. Magn. Mater. 252, 235 (2002).CrossRefGoogle Scholar
20. Shimada, K., Shuchi, S., Fujita, T., Miyazaki, T., Shibayama, A. and Kamiyama, S.: Newly improved magnetic compound fluid (MCF) for more stability of particle dispersion. Int. J. Appl. Electron. 19, 351 (2004).Google Scholar
21. López-López, M.T., Durán, J.D.G., Delgado, A.V., González-Caballero, F.: Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different non-polar carriers. J. Colloid Interf. Sci. 2005 , submitted.CrossRefGoogle Scholar
22. de Vicente, J., Bossis, G., Lacis, S. and Guyot, M.: Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 251, 100 (2002).CrossRefGoogle Scholar
23. van Ewijk, G.A., Vroege, G.J. and Kuipers, B.W.M.: Phase behavior of magnetic colloid-polymer mixtures: 2. A magnetic sensing coil study. Langmuir 13, 382 (2002).CrossRefGoogle Scholar
24. Garnett, J.C.M.: Colours in metal phases and in metallic films. Philos. Trans. R. Soc. London 203, 385 (1904).Google Scholar
25. Reitz, J.R., Milford, F.J. and Christy, R.W.: Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, Reading, MA, 1993), pp. 253270.Google Scholar
26. de Gans, B.J.: Magnetorheology of an invere ferrofluid. Ph.D. Thesis, University of Twente, Utrecht, The Netherlands (2000).Google Scholar
27. Shimada, K., Akagama, Y., Kamiyama, S., Fujita, T., Miyazadi, T. and Shibayama, A.: New microscopic polishing with magnetic compound fluid (MCF). J. Intell. Mater. Syst. Struct. 13, 405 (2002).CrossRefGoogle Scholar