Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T21:35:45.334Z Has data issue: false hasContentIssue false

Preparation of SiO2-pillared layered titanate thin films

Published online by Cambridge University Press:  31 January 2011

Takeshi Sumida
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Ryu Abe
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Michikazu Hara
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Junko N. Kondo
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
Kazunari Domen*
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

The interlayer space of a thin film of layered titanate, Cs0.68Ti1.830.17O4, was successfully expanded by SiO2 pillaring. Ion exchange of the Cs ions in the interlayer to alkylammoniuim cations, n-CnH2n+1NH3+ (n = 8, 12, 18), expanded the interlayer space, and enabled intercalation of tetraethylorthosilicate. X-ray diffraction and the cross section of transmission electron microscopy images revealed that tetraethylorthosilicate-treated thin film maintained the expansion of interlayer space by SiO2 pillaring after calcination at 773 K. X-ray photoelectron spectroscopy after etching the thin film about 100 nm from the surface further confirmed the existence of SiO2 in the interlayer space.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Looi, H.J., Whitfield, M.D., Foord, J.S., and Jackman, R.B., Thin Solid Films 343, 616 (1999).Google Scholar
2.Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J.N., and Domen, K., Chem. Mater. 10, 329 (1998).CrossRefGoogle Scholar
3.Sumida, T., Abe, R., Hara, M., Kondo, J.N., and Domen, K., Denki Kagaku Oyobi Kogyo Butsuri Kagaku 67, 1224 (1999).Google Scholar
4.Abe, R., Ikeda, S., Kondo, J.N., Hara, M., and Domen, K., Thin Solid Films 343–344, 156 (1999).CrossRefGoogle Scholar
5.Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W., and Rubin, M.K., J. Am. Chem. Soc. 113, 3189 (1991).CrossRefGoogle Scholar
6.Domen, K., Ebina, Y., and Kondo, J., J. Res. Chem. Intermed. 20, 895 (1994).CrossRefGoogle Scholar
7.Domen, K., Ebina, Y., Ikeda, S., Kondo, J.N., and Maruya, K., Catal. Today 28, 167 (1996).CrossRefGoogle Scholar
8.Abe, R., Hara, M., Kondo, J.N., Domen, K., Shinohara, K., and Tanaka, A., Chem. Mater. 9, 2179 (1997).CrossRefGoogle Scholar
9.Grey, I.E., Madsen, I.C., and Watts, J.A., J. Solid State Chem. 66, 7 (1987).CrossRefGoogle Scholar
10.Sasaki, T., Watanabe, M., Michiue, Y., Komatsu, Y., Izumi, F., and Takenouchi, S., Chem. Mater. 7, 1001 (1995).CrossRefGoogle Scholar
11.Sasaki, T., Izumi, F., and Watanabe, M., M. Chem. Mater. 8, 777 (1996).CrossRefGoogle Scholar
12.Sasaki, T., Watanabe, M., Hashizumi, H., Yamada, H., and Nakazawa, H., J. Chem. Soc. Chem. Commun. 229 (1996).CrossRefGoogle Scholar