Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:57:39.185Z Has data issue: false hasContentIssue false

Preparation of nanocrystalline copper by electrodeposition

Published online by Cambridge University Press:  31 January 2011

S. Bandyopadhyay
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India
Get access

Abstract

Copper particles of sizes in the range 3.1 to 11.4 nm have been grown within gel compositions of the system CuO–SiO2 by an electrodeposition process applying voltages varying from 5 to 15 V. Composite films of these metal particles dispersed in a polystyrene matrix have been prepared on Corning No. 7059 glass slides by a dip-coating technique and their optical absorption characteristics have been delineated. The spectra show maxima at wavelengths in the range 380 to 470 nm, depending on the particle size. The results have been analyzed using the Mie theory. The electrical conductivity as extracted from this analysis is found to have reasonable correspondence with data reported earlier for copper nanoparticles in glass-ceramic systems.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kear, B. H., Gross, L. E., Keem, J. E., Siegel, R. W., Spaepen, F., Taylor, K. C., Thomas, E. L., and Tu, K. N., Research Opportunities for Materials with Ultrafine Microstructures (National Academy, Washington, DC, 1989), Vol. NMAB-454.Google Scholar
2.Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
3.Heuer, A. H., Fink, D. J., Laraia, V. J., Arias, J. L., Calvert, P. D., Kendall, K., Messing, G. L., Blackwell, J., Rieke, P. C., Thompson, D. H., Wheeler, A. P., Veis, A., and Caplan, A. I., Science 255, 1098 (1992).CrossRefGoogle Scholar
4.Roy, S. and Chakravorty, D., Appl. Phys. Lett. 59, 1415 (1991).CrossRefGoogle Scholar
5.Roy, S. and Chakravorty, D., Phys. Rev. B 47, 3089 (1993).CrossRefGoogle Scholar
6.Roy, B., Roy, S., and Chakravorty, D., J. Mater. Res. 9, 2677 (1994).CrossRefGoogle Scholar
7.Bandyopadhyay, S., Roy, S., and Chakravorty, D., Solid State Commun. 99, 835 (1996).CrossRefGoogle Scholar
8.X-ray Powder Data File, American Society for Testing Materials, Philadelphia, PA (1960), p. 583.Google Scholar
9.Hibbert, D. B. and Melrose, J. R., Proc. R. Soc. London A423, 149 (1989).Google Scholar
10.Melrose, J. R. and Hibbert, D. B., Phys. Rev. A 40, 1727 (1989).CrossRefGoogle Scholar
11.Matsushita, M., Honda, K., Toyoki, H., Hayakawa, Y., and Kondo, H., J. Phys. Soc. Jpn. 55, 2618 (1986).CrossRefGoogle Scholar
12.Usami, Y. and Nagatani, T., J. Phys. Soc. Jpn. 59, 474 (1990).CrossRefGoogle Scholar
13.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley, New York, 1976), p. 330.Google Scholar
14.Mie, G., Ann. Physik 25, 377 (1908).CrossRefGoogle Scholar
15.Kreibig, U., J. Phys. F: Met. Phys. 4, 999 (1974).CrossRefGoogle Scholar
16.Roy, B. and Chakravorty, D., J. Appl. Phys. 74, 4190 (1993).CrossRefGoogle Scholar