Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T22:02:42.677Z Has data issue: false hasContentIssue false

Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility

Published online by Cambridge University Press:  22 May 2014

Chengde Gao
Affiliation:
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People's Republic of China
Jingyu Zhuang
Affiliation:
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People's Republic of China
Pengjian Li
Affiliation:
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People's Republic of China
Cijun Shuai*
Affiliation:
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People's Republic of China; and Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston 29425, South Carolina
Shuping Peng*
Affiliation:
Cancer Research Institute, Central South University, Changsha 410078, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Multilayer stereo micro/nanometer-sized porous surface structures were prepared by selective chemical etching of biphasic calcium phosphate (BCP) scaffolds with hydroxyapatite (HAP)/β-tricalcium phosphate (β-TCP) weight ratios of 90/10, 80/20, 70/30, 60/40, and 50/50 in phosphoric acid solution. The porous surface structures revealed periodic fluctuations in the observed heights of micro/nanometer-sized needles. And the average height increased from 0.59 ± 0.02 to 12.09 ± 0.03 μm when the β-TCP content in BCP scaffolds rose from 10 to 50%. In vivo cell tests using MG-63 cells (belonging to the human osteosarcoma cell line) revealed that micro/nanometer-sized pores on the scaffold surface could provide location for cell adhesion and migration and facilitate the formation of gap junction between cells. The BCP scaffold with 40% β-TCP exhibited the optimal surface structure for cell seeding and growth due to the largest number of micro/nanometer-sized pores on the surface. However, excessive β-TCP led to the damage of micro/nanometer-sized porous surface structure, which further impeded the cell interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, F., Xu, C.Y., Kotaki, M., and Wang, S.: Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J. Biomater. Sci., Polym. Ed. 15, 1483 (2004).CrossRefGoogle ScholarPubMed
Cao, B., Zhou, D., Xue, M., Li, G., Yang, W., Long, Q., and Ji, L.: Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Appl. Surf. Sci. 255, 505 (2008).CrossRefGoogle Scholar
Cheng, Z. and Teoh, S.H.: Surface modification of ultra thin poly(ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25, 1991 (2004).CrossRefGoogle ScholarPubMed
Gittens, R.A., McLachlan, T., Olivares-Navarrete, R., and Cai, Y.: The effects of combined micrometer-/submicrometer-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395 (2011).CrossRefGoogle Scholar
Bagherzadeh, R., Latifi, M., Najar, S.S., Tehran, M.A., and Kong, L.: Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. J. Biomed. Mater. Res., A 101, 765 (2013).CrossRefGoogle ScholarPubMed
He, L., Zhao, P., Han, Q., Wang, X., Cai, X., Shi, Y., and Zhou, L.: Surface modification of poly-L-lactic acid fibrous scaffolds by a molecular-designed multiwalled carbon nanotube multilayer for enhancing cell interactions. Carbon 56, 224 (2013).CrossRefGoogle Scholar
Choi, H. and Sofranko, A.C.: Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction. Adv. Funct. Mater. 16, 1067 (2006).CrossRefGoogle Scholar
Khan, S. and Newaz, G.: A comprehensive review of surface modification for neural cell adhesion and patterning. J. Biomed. Mater. Res., A 93, 1209 (2010).CrossRefGoogle ScholarPubMed
Andersson, A.S., Backhed, F., von Euler, A., Richter-Dahlfors, A., Sutherland, D., and Kasemo, B.: Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 24, 3427 (2003).CrossRefGoogle ScholarPubMed
Bignon, A., Chouteau, J., Chevalier, J., Fantozzi, G., Carret, J.P., Chavassieux, P., Boivin, G., Melin, M., and Hartmann, D.: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci.: Mater. Med. 14, 1089 (2003).Google ScholarPubMed
Ahmed, S.F., Rho, G.H., Lee, J.Y., Kim, S.J., Kim, H.Y., Jang, Y.J., Moon, M.W., and Lee, K.R.: Nanoembossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf. Coat. Technol. 205, S104 (2010).CrossRefGoogle Scholar
Bax, D.V., McKenzie, D.R., Weiss, A.S., and Bilek, M.M.M.: Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater. 5, 3371 (2009).CrossRefGoogle ScholarPubMed
Stráský, J., Havlíková, J., Bačáková, L., Harcuba, P., Mhaede, M., and Janeček, M.: Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl. Surf. Sci. 281, 73 (2013).CrossRefGoogle Scholar
Venugopal, J., Prabhakaran, M.P., Zhang, Y., Low, S., Choon, A.T., and Ramakrishna, S.: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos. Trans. R. Soc., A 368, 2065 (2010).CrossRefGoogle ScholarPubMed
Chen, J.P. and Su, C.H.: Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 7, 234 (2011).CrossRefGoogle ScholarPubMed
Yamazaki, S., Maeda, H., Obata, A., Inukai, K., Kato, K., and Kasuga, T.: Aluminum silicate nanotube coating of siloxane-poly(lactic acid)-vaterite composite fibermats for bone regeneration. J. Nanomater. 2012, 463768 (2012).CrossRefGoogle Scholar
He, L., Chen, J., Farson, D.F., Lannutti, J.J., and Rokhlin, S.I.: Wettability modification of electrospun poly(ɛ-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres. Appl. Surf. Sci. 257, 3547 (2011).CrossRefGoogle Scholar
Rey, C., Combes, C., Drouet, C., and Glimcher, M.J.: Bone mineral: Update on chemical composition and structure. Osteoporosis Int. 20, 1013 (2009).CrossRefGoogle ScholarPubMed
Dohan Ehrenfest, D.M., Coelho, P.G., Kang, B.S., Sul, Y.T., and Albrektsson, T.: Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 28, 198 (2010).CrossRefGoogle ScholarPubMed
Veljović, D., Zalite, I., Palcevskis, E., Smiciklas, I., Petrović, R., and Janaćković, D.J.: Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram. Int. 36, 595 (2010).CrossRefGoogle Scholar
Nath, S., Biswas, K., Wang, K., Bordia, R.K., and Basu, B.: Sintering, phase stability, and properties of calcium phosphate-mullite composites. J. Am. Ceram. Soc. 93, 1639 (2010).CrossRefGoogle Scholar
Schmidlin, P.R., Nicholls, F., Kruse, A., Zwahlen, R.A., and Weber, F.E.: Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Clin. Oral Implants Res. 24, 149 (2013).CrossRefGoogle ScholarPubMed
Jabri, M., Mejdoubi, E., El Gadi, M., and Hammouti, B.: Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments. Res. Chem. Intermed. 39, 659 (2013).CrossRefGoogle Scholar
Cao, H. and Kuboyama, N.: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46, 386 (2010).CrossRefGoogle ScholarPubMed
Elayaraja, K., Chandra, V.S., Joshy, M.I., Suganthi, R.V., Asokan, K., and Narayana Kalkura, S.: Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique. Appl. Surf. Sci. 274, 203 (2013).CrossRefGoogle Scholar
Lukić, M., Stojanović, Z., Škapin, S.D., Maček-Kržmanc, M., Mitrić, M., Marković, S., and Uskoković, D.: Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc. 31, 19 (2011).CrossRefGoogle Scholar
Emadi, R., Roohani Esfahani, S.I., and Tavangarian, F.: A novel, low temperature method for the preparation of β-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater. Lett. 64, 993 (2010).CrossRefGoogle Scholar
Shiota, T., Shibata, M., Yasuda, K., and Matsuo, Y.: Influence of β-tricalcium phosphate dispersion on mechanical properties of hydroxyapatite ceramics. J. Ceram Soc. Jpn. 116, 1002 (2008).CrossRefGoogle Scholar
Abe, Y., Okazaki, Y., Hiasa, K., and Yasuda, K.: Bioactive surface modification of hydroxyapatite. BioMed Res. Int. 2013, 626452 (2013).CrossRefGoogle ScholarPubMed
Kaygili, O., Tatar, C., and Yakuphanoglu, F.: Structural and dielectrical properties of Mg3-Ca3(PO4)2 bioceramics obtained from hydroxyapatite by sol-gel method. Ceram. Int. 38, 5713 (2012).CrossRefGoogle Scholar
Kannan, S., Pina, S., and Ferreira, J.M.F.: Formation of strontium-stabilized β-tricalcium phosphate from calcium-deficient apatite. J. Am. Ceram. Soc. 89, 3277 (2006).CrossRefGoogle Scholar
Shuai, C., Gao, C., Nie, Y., Hu, H., Zhou, Y., and Peng, S.: Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnol. 22, 285703 (2011).CrossRefGoogle ScholarPubMed
Shuai, C., Gao, C., Nie, Y., Hu, H., Qu, H., and Peng, S.: Structural design and experimental analysis of a selective laser sintering system with nano-hydroxyapatite powder. J. Biomed. Nanotechnol. 6, 370 (2010).CrossRefGoogle ScholarPubMed
Shuai, C., Nie, Y., Gao, C., Feng, P., Zhuang, J., Zhou, Y., and Peng, S.: The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering. J. Exp. Nanosci. 5, 598 (2012).Google Scholar
Akazawa, T., Murata, M., Hino, J., Nagano, F., Shigyo, T., Nomura, T., Inano, H., Itabashi, K., Yamagishi, T., Nakamura, K., Takahashi, T., Iida, S., and Kashiwazaki, H.: Surface structure and biocompatibility of demineralized dentin matrix granules soaked in a simulated body fluid. Appl. Surf. Sci. 262, 51 (2012).CrossRefGoogle Scholar
Figueiredo, A., Coimbra, P., Cabrita, A., Guerra, F., and Figueiredo, M.: Comparison of a xenogeneic and an alloplastic material used in dental implants in terms of physico-chemical characteristics and in vivo inflammatory response. Mater. Sci. Eng., C 33, 3506 (2013).CrossRefGoogle Scholar
Bass, J.D., Belamie, E., Grosso, D., Boissiere, C., Coradin, T., and Sanchez, C.: Nanostructuration of titania films prepared by self-assembly to affect cell adhesion. J. Biomed. Mater. Res., A 93, 96 (2010).CrossRefGoogle ScholarPubMed
Janshoff, A., Kunze, A., Michaelis, S., Heitmann, V., Reiss, B., and Wegener, J.: Cell adhesion monitoring using substrate-integrated sensors. J. Adhes. Sci. Technol. 24, 2079 (2010).CrossRefGoogle Scholar
Hu, C., Ding, Y., Chen, J., Liu, D., Zhang, Y., Ding, M., and Wang, G.: Basic fibroblast growth factor stimulates epithelial cell growth and epithelial wound healing in canine corneas. Vet. Ophthalmol. 12, 170 (2009).CrossRefGoogle ScholarPubMed
Leng, P., Ding, C., Zhang, H., and Wang, Y.: Reconstruct large osteochondral defects of the knee with hIGF-1 gene enhanced Mosaicplasty. Knee 19, 804 (2012).CrossRefGoogle ScholarPubMed
Houmard, M., Fu, Q., Genet, M., Saiz, E., and Tomsia, A.P.: On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J. Biomed. Mater. Res., B 101, 1233 (2013).CrossRefGoogle ScholarPubMed
Daculsi, G., Miramond, T., Borget, P., and Baroth, S.: Smart calcium phosphate bioceramic scaffold for bone tissue engineering. Key Eng. Mater. 529530, 19 (2013).Google Scholar
Arinzeh, T.L., Peter, S.J., Archambault, M.P., van den Bos, C., Gordon, S., Kraus, K., Smith, A., and Kadiyala, S.: Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Jt. Surg., Am. Vol. 85, 1927 (2003).CrossRefGoogle Scholar
Arinzeha, T.L., Tranb, T., Mcalary, J., and Daculsi, G.: A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26, 3631 (2005).CrossRefGoogle Scholar
Kadiyala, S., Jaiswal, N., and Bruder, S.P.: Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 3, 173 (1997).CrossRefGoogle Scholar
Wang, S.H., Zhao, P., Lin, C., and Huang, Y.L.: In vitro and in vivo osteoconductivity of bone marrow stromal cells in biomimetic polycaprolactone/calcium phosphate cement composites. J. Biomater. Tissue Eng. 3, 512 (2013).CrossRefGoogle Scholar