Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T07:40:01.907Z Has data issue: false hasContentIssue false

The preparation of metal–polymer composite materials using ultrasound radiation: Part II. Differences in physical properties of cobalt–polymer and iron–polymer composites

Published online by Cambridge University Press:  31 January 2011

S. Wizel
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
S. Margel
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
A. Gedanken
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel, 52900
T. C. Rojas
Affiliation:
Instituto de Ciencia de Materiales de Sevilla. Centro de Investigaciones Cientificas Isla de la Cartuja, Avda. Americo Vespucio s/n, 41092-Sevilla, Spain
A. Fernández
Affiliation:
Instituto de Ciencia de Materiales de Sevilla. Centro de Investigaciones Cientificas Isla de la Cartuja, Avda. Americo Vespucio s/n, 41092-Sevilla, Spain
R. Prozorov
Affiliation:
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel, 52900
Get access

Abstract

Composite materials containing amorphous iron embedded in poly(methylacrylate) or poly(methylmethacrylate) and amorphous cobalt embedded in poly(methylacrylate) were formed using a sonochemical method. The physical and thermal properties of the composite materials were probed. A significant difference in the solubility of the iron–poly(methylacrylate) and cobalt–poly(methylacrylate) in various solvents was observed. This difference is accounted for by the stronger interaction existing between the cobalt and the surrounding polymer. For iron–poly(methylacrylate) this interaction is weakened due to the formation of an iron complex.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dominy, R.N., Lewis, N.S., Bruce, J.A., Bookbinder, D.C., and Wrighton, M.S., J. Am. Chem. Soc. 104, 467 (1982).CrossRefGoogle Scholar
2.Bruce, J.A., Murahashi, T., and Wrighton, M.S., J. Phys. Chem. 86, 1552 (1982).CrossRefGoogle Scholar
3.Kao, W.H. and Kuwana, T., J. Am. Chem. Soc. 106, 473 (1984).CrossRefGoogle Scholar
4.Weisshaar, D. and Kuwana, T., J. Electroanal. Chem. 163, 395 (1984).CrossRefGoogle Scholar
5.Bartak, D.E., Kazee, B., Shimazu, K., and Kuwana, T., Anal. Chem. 58, 2756 (1986).CrossRefGoogle Scholar
6.Kost, M., Bartak, D.E., Kazee, B., and Kuwana, T., Anal. Chem. 60, 2379 (1988).CrossRefGoogle Scholar
7.Griffiths, C.H., O'Horo, M.P., and Smith, T.W., J. Appl. Phys. 50, 7108 (1979).CrossRefGoogle Scholar
8.Bose, C.S.C and Rajeshwar, K., J. Electroanal. Chem. 333, 235 (1992).CrossRefGoogle Scholar
9.Chen, C.C., Bose, C.S.C, and Rajeshwar, K., J. Electroanal. Chem. 350, 161 (1993).CrossRefGoogle Scholar
10.Thomas, J.R., J. Appl. Phys. 37, 2914 (1966).CrossRefGoogle Scholar
11.Smith, T.W. and Wychick, D., J. Phys. Chem. 84, 1621 (1980).CrossRefGoogle Scholar
12.Tannenbaum, R., Flenniken, C.L., and Goldberg, E.F., J. Polym. Sci., Part B: Polm. Phys. 28, 2421 (1990).CrossRefGoogle Scholar
13.Bronstein, L.M., Mirzoeva, E.Sh., Valetsky, P.M., Soand, S.P., and Register, R.A., J. Mater. Chem. 5, 1197 (1995).CrossRefGoogle Scholar
14.Price, G.J., Adv. Sonochem. 1, 231 (1990).Google Scholar
15.Lindstrom, O. and Lamm, O., J. Phys. Colloid. Chem. 55, 1139 (1951).CrossRefGoogle Scholar
16.Henglein, A., Macromol. Chem. 14, 15 (1954).CrossRefGoogle Scholar
17.Suslick, K.S., Ultrasound: Its Chemical, Physical and Biological Effects (VCH Publishers, 1988), Chap. 4.Google Scholar
18.Suslick, K.S., Choe, S-B., Cichowlas, A.A., and Grinstaff, M.W., Nature 353, 414 (1991).CrossRefGoogle Scholar
19.Grinstaff, M.W., Cichowlas, A.A., Choe, S.B., and Suslick, K.S., Ultrasonics 30, 168 (1992).CrossRefGoogle Scholar
20.Suslick, K.S., Hyeon, T., Fang, M., and Cichowlas, A.A., in Molecularly Designed Nanostructured Materials, edited by Gonsalves, K.E., Chow, G.M., and Cammarata, R.C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), pp. 201206.Google Scholar
21.Suslick, K.S., Hyeon, T., Fang, M., and Cichowlas, A.A., in Molecularly Designed Nanostructured Materials, edited by Gonsalves, K.E., Chow, G.M., and Cammarata, R.C. (Mater. Res. Soc. Symp. Proc. 351, Pittsburgh, PA, 1994), pp. 443448.Google Scholar
22.Koltypin, Yu., Cao, X., Kataby, G., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).CrossRefGoogle Scholar
23.Cao, X., Prozorov, R., Koltypin, Yu., Kataby, G., Felner, I., and Gedanken, A., J. Mater. Res. 12, 402 (1997).CrossRefGoogle Scholar
24.Dhas, N.A. and Gedanken, A., J. Phys. Chem. B 101, 9495 (1997).CrossRefGoogle Scholar
25.Dhas, N.A., Koltypin, Yu., and Gedanken, A., Chem. Mater. 9, 3159 (1997).CrossRefGoogle Scholar
26.Donaldson, D.J., Farrington, M.D., and Kruus, P., J. Phys. Chem. 83, 3130 (1979).CrossRefGoogle Scholar
27.Kruus, P. and Patraboy, T.J., J. Phys. Chem. 89, 3379 (1985).CrossRefGoogle Scholar
28.Kruus, P., Ultrasonics 21, 201 (1983).CrossRefGoogle Scholar
29.Kruus, P., O'Neill, M., and Robertson, D., Ultrasonics 28, 304 (1990).CrossRefGoogle Scholar
30.Price, G.J., Norris, D.J., and West, P.J., Macromolecules 25, 6447 (1992).CrossRefGoogle Scholar
31.Price, G.J. and Patel, A.M., Polymer 33, 4423 (1992).CrossRefGoogle Scholar
32.Wizel, S., Prozorov, R., Cohen, Y., Aurbach, D., Margel, S., and Gedanken, A., J. Mater. Res. 13, 211 (1998).CrossRefGoogle Scholar
33.Schmid, R., Kirchner, K., and Dickert, F.L., Inorg. Chem. 27, 1530 (1988).CrossRefGoogle Scholar
34.Kataby, G., Prozorov, T., Koltypin, Yu., Cohen, H., Sukenik, C.N., Ulman, A., and Gedanken, A., Langmuir 13, 6151 (1997).CrossRefGoogle Scholar
35.Dutta, A., Mahato, P.K., and Dass, N.N., Eur. Polym. J. 27, 465 (1991).CrossRefGoogle Scholar
36.Hartman, R.J., Colloid Chemistry (Houghton Mifflin Company, 1947), p. 260.Google Scholar
37.Cao, X., Kataby, G., Koltypin, Yu., Prozorov, R., and Gedanken, A., J. Mater. Res. 10, 2952 (1995).CrossRefGoogle Scholar
38.Leslie-Pelecky, D.L. and Rieke, R.D., Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar
39.Bianconi, A., in X-Ray Absorbtion: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Konigsberger, D.C. and Prins, R. (John Wiley & Sons, New York, 1988) pp. 573662.Google Scholar
40.Practical Surface Analysis. Volume 1: Auger and X-Ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P. (John Wiley, New York, 1990).Google Scholar
41.Kim, Y.J., Gao, Y., and Chambers, S.A., Surf. Sci. 371, 358 (1997).CrossRefGoogle Scholar