Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:34:15.772Z Has data issue: false hasContentIssue false

Preparation of LaBa2Cu3Oy thick films in the La–Ba–Cu–O system by partial melting techniques

Published online by Cambridge University Press:  03 March 2011

L. Dimesso
Affiliation:
Superconductivity Research Laboratory, Division 8, ISTEC, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456, Japan
O.B. Hyun
Affiliation:
Superconductivity Research Laboratory, Division 8, ISTEC, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456, Japan
I. Hirabayashi
Affiliation:
Superconductivity Research Laboratory, Division 8, ISTEC, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456, Japan
Get access

Abstract

The preparation of thick films of the LaBa2Cu3Oy (La-123) phase by using the partial melting technique (PMT) of powders deposited on MgO substrates by drying alcoholic suspensions is reported. The effects of the starting composition, processing time (t), and temperature (T) on the superconducting properties of the La1+xBa2Cu3Oy (−0.25 ⋚ x ⋚ 0.5) system were investigated. The presence of the La4Ba2Cu2O10 (La 422) phase was detected in the samples quenched in liquid N2 after heating up to 1200 °C. The crucial step of the processing is the cooling rate down to the crystallization temperature, Tp, determined by DTA analysis, in order to favor the formation of the La-123 phase from the reaction between the La-422 solid phase and the liquid. The superconducting properties, tested by magnetization measurements, showed a diamagnetic onset temperature (Tc,diam) as high as 89 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J.G. and Muller, K.A., Z.Phys. B 64, 169 (1986).CrossRefGoogle Scholar
2Muromachi, E., Uchida, Y., Fujimori, A., and Kato, K., Jpn. J. Appl. Phys. 26, L1546 (1987).CrossRefGoogle Scholar
3Maeda, A., Yabe, T., Uchinomura, K., and Tanaka, S., Jpn. J. Appl. Phys. 26, L1368 (1987).CrossRefGoogle Scholar
4Maeda, A., Yabe, T., Uchinomura, K., Izumi, M., and Tanaka, S., Jpn. J. Appl. Phys. 26, L1670 (1987).CrossRefGoogle Scholar
5Tallon, J.L. and Flower, N.E., Physica C 204, 237 (1993).CrossRefGoogle Scholar
6Wada, T., Yamauchi, H., and Tanaka, S., J. Am. Ceram. SOC. 75, 1705 (1992).CrossRefGoogle Scholar
7Maeda, A., Noda, T., Matsumoto, M., Wada, T., Izumi, M., Yabe, T., Uchinokura, K., and Tanaka, S., J.Appl. Phys. 64, 4095 (1988).CrossRefGoogle Scholar
8Wada, T., Suzuki, N., Maeda, A., Yabe, T., Uchida, S., Uchinokura, K., and Tanaka, S., Appl. Phys. Lett. 52, 1989 (1988).CrossRefGoogle Scholar
9Wada, T., Suzuki, N., Maeda, A., Ydbe, T., Uchinokura, K., Uchida, S., and Tanaka, S., Phys. Rev. B 39, 9126 (1989).CrossRefGoogle Scholar
10Sunshine, S.A., Schneemeyer, L.F., Waszczak, J.V., Murphy, D.W., Miraglia, S., Santoro, A., and Beech, F., J.Cryst. Growth 85, 632 (1987).CrossRefGoogle Scholar
11Dong, C., Kiang, J.K., Che, G.C., Xie, S.S., Zao, Z.X., Yang, Q.S., Ni, Y.M., and Liu, G.R., Phys. Rev. B 37, 5182 (1988).CrossRefGoogle Scholar
12Shanon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
13Onoda, M., Fukuda, K., Sera, M., and Sato, M., Solid State Commun. 64, 1225 (1987).CrossRefGoogle Scholar
14Lindemer, T.B., Chakoumakos, B.C., Specht, E.D., Williams, R.K., and Chen, Y.J., Physica C 231, 80 (1994).CrossRefGoogle Scholar
15Wong-Ng, W., Paretzkin, B., and Fuller, E.R. Jr., J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
16Hong, B.S. and Mason, T.O., (Supercond. Ceramics II) Ceram.Trans. 18, 95 (1991).Google Scholar
17Tallon, J.L. and Mellander, B.E., Science 258, 781 (1992).CrossRefGoogle Scholar
18Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., Dover, R.B. van, Kammlott, G.W., Fastnacht, R.A., and Keith, H.D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
19Yoo, S., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, Ll000 (1994).CrossRefGoogle Scholar
20Murakami, M., Yoo, S., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
21Murakami, M., Melt Processed High Temperature Superconductors, edited by Murakami, M. (World Scientific, Singapore, 1993).CrossRefGoogle Scholar
22Dimesso, L., Francesconi, M.G., Calestani, G., Silva, E., Fastampa, R., Marcon, R., Fiorani, D., Agostinelli, E., and Testa, A.M., Physica C 176, 216 (1991).CrossRefGoogle Scholar
23Ghandehari, M.H. and Brass, S.G., J.Mater. Res. 4, 1111 (1989).CrossRefGoogle Scholar
24Migeon, H.N., Jeannot, F., Zanne, M., and Aubry, J., Rev.Chim. Miner. 13, 440 (1976).Google Scholar
25Arjomand, M. and Machin, D.J., J.Chem. SOC. Dalton Trans. 11, 1061 (1975).CrossRefGoogle Scholar
26Powder Diffraction File, Alphabetical Index Inorganic Phases, JCPDS (1993).Google Scholar
27Lindemer, T.B., Washburn, F.A., MacDougall, C.S., and Cavin, O.B., Physica C 174, 135 (1991).CrossRefGoogle Scholar
28Michel, C., Er-rakho, L., and Raveau, B., J. Solid State Chem. 39, 161 (1981).CrossRefGoogle Scholar
29Akinaga, H., Takita, K., Asano, H., and Masuda, K., Physica C 161, 581 (1989).CrossRefGoogle Scholar
30Shi, D., Boley, M.S., Welp, U., Chen, J.G., and Liao, Y., Phys. Rev. B 40, 5255 (1989).CrossRefGoogle Scholar