Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:32:20.201Z Has data issue: false hasContentIssue false

Preparation of FeCl3–IBr–H2SO4–graphite multi-intercalation compounds

Published online by Cambridge University Press:  03 March 2011

Takeshi Abe
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Yasuo Mizutani
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Eiji Ihara
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Mitsuru Asano
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Toshio Harada
Affiliation:
Institute of Atomic Energy, Kyoto University, Uji, Kyoto 611, Japan
Get access

Abstract

Stages 4-6 FeCl3-graphite intercalation compounds (GIC's) have been prepared by an ordinary two-bulb method, and FeCl3-IBr-graphite bi-intercalation compounds (GBC's) are synthesized by holding the FeCl3-GIC's in the saturated vapor of IBr. The x-ray diffraction patterns of the FeCl3-IBr-GBC's obtained from stages 4, 5, and 6 FeCl3-GIC's give the stacking sequences as G(FeCl3)GG(IBr)GG(FeCl3)G, G(FeCl3)GG(IBr)GGG(FeCl3)G, and G(FeCl3)GG(IBr)GG(IBr)GG(FeCl3)G, respectively, where G, (FeCl3), and (IBr) refer to the graphite, FeCl3, and IBr layers, respectively. The multi-intercalation of H2SO4 into the FeCl3-IBr-GBC's synthesized from stages 4 and 6 FeCl3-GIC's occurs at all the vacant galleries of the GBC's at the same time. In contrast, the multi-intercalation of H2SO4 into the FeCl3-IBr-GBC obtained from the stage 5 FeCl3-GIC takes place in two processes. The first multi-intercalation occurs at the gallery adjacent to the bi-intercalated IBr layer, and the stacking sequence of the resulting graphite multi-intercalation compound is determined to be G(FeCl3)GG(IBr)G(H2SO4)GG(FeCl3)G, where (H2SO4) refers to the H2SO4 layer. The second multi-intercalation occurs at all the rest of the vacant galleries.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lagrange, P., Metrot, A., and Herold, A., C. R. Acad. Sci. Paris Ser. C 273, 701 (1974).Google Scholar
2.Freeman, A.G., J.C.S. Chem. Comm., 746 (1974).Google Scholar
3.Scharff, P., Stumpp, E., and Ehrhardt, C., Synth. Met. 23, 415 (1988).CrossRefGoogle Scholar
4.York, B. R., Hark, S. K., and Solin, S. A., Synth. Met. 7, 25 (1983).CrossRefGoogle Scholar
5.Herold, A., Furdin, G., Guerard, D., Hachim, L., Lelaurain, M., Nadi, N. E., and Vangelisti, R., Synth. Met. 12, 11 (1985).CrossRefGoogle Scholar
6.Nadi, N. E., McRae, E., Mareche, J. F., Lelaurain, M., and Herold, A., Carbon 24, 695 (1986).CrossRefGoogle Scholar
7.Suzuki, M., Chow, P.C., and Zabel, H., Phys. Rev. B 32, 6800 (1985).CrossRefGoogle Scholar
8.Shioyama, H., Tatsumi, K., Fujii, R., and Mizutani, Y., Carbon 28, 119 (1990).CrossRefGoogle Scholar
9.Mizutani, Y., Abe, T., Asano, M., and Harada, T., J. Mater. Res. 8, 1586 (1993).CrossRefGoogle Scholar
10.Cullity, B. D., X-Ray Diffraction (Addison-Wesley, Reading, MA, 1956).Google Scholar
11.International Tables for X-ray Crystallography III (The Kynoch Press, Birmingham, U.K., 1962), p. 210.Google Scholar
12.Cowley, J.M. and Iber, J.A., Acta Crystallogr. 9, 421 (1956).CrossRefGoogle Scholar
13.Riidorff, W., Z. Phys. Chem. 45, 2 (1940).Google Scholar
14.Metz, W. and Hohlwein, D., Carbon 13, 87 (1975).CrossRefGoogle Scholar
15.Mizutani, Y., Thesis, Kyoto University (1985).Google Scholar
16.Mazurek, H., Ghavamishahidi, G., Dresselhaus, G., and Dresselhaus, M.S., Carbon 20, 415 (1982).CrossRefGoogle Scholar
17.Colin, G. and Herold, A., C.R., 244, 2294 (1957).Google Scholar